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Abstract

Process-oriented programming is a method for applying a high degree of concurrency

within software design while avoiding associated pitfalls such as deadlocks and race

hazards. A process-oriented computer program contains multiple distinct software

processes which execute concurrently. All interaction between processes, including

information exchange, occurs via explicit communication and synchronisation mech-

anisms. The explicit nature of interaction in process-oriented programming underpins

its ability to provide manageable concurrency. These interaction mechanisms represent

both a potential overhead in the execution of process-oriented software and a point

of mechanical sympathy with emerging multi-core computer architectures. This thesis

details engineering to reduce the overheads associated with a process-oriented style of

software design and evaluate its mechanical sympathy.

The first half of this thesis provides an in-depth review of facilities for concurrent

programming and their support in programming languages. Common concurrent pro-

gramming facilities are defined and their relationship to process-oriented design es-

tablished. It contains an analysis of the significance of mechanical sympathy in pro-

gramming languages, trends in hardware and software design, and relates these to

process-oriented programming.

The latter part of this thesis describes techniques for the compilation and execu-

tion of process-oriented software on multi-core hardware so as to achieve the max-

imum utilisation of parallel computing resources with the minimum overhead from

ii



process-oriented interaction mechanisms. A new runtime kernel design for the occam-

pi programming language is presented and evaluated. This design enables efficient

cache-affine work-stealing scheduling of processes on multi-core hardware using wait-

free and non-blocking algorithms. This is complemented by modern compilation tech-

niques for occam-pi program code using machine independent assembly to improve

performance and portability, and methods for debugging the execution of process-

oriented software using a virtual machine interpreter. Through application, these meth-

ods prove the mechanical sympathy and parallel execution potential of a process-oriented

software.
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Chapter 1

Introduction

This thesis outlines and demonstrates techniques for the compilation and execution of

process-oriented software on multi-core hardware, with an emphasis on efficient use

of computer resources (processor time and memory space). This work addresses two

connected research questions:

1. Can software which uses unbounded concurrency for structure be efficient?

2. Can process-oriented programming be used to build scalable software?

The first question applies when software uses a high degree of concurrency without

regard for the availability of parallel processing resources. The second question inves-

tigates the effect of making more parallel processing resources available to such soft-

ware.

We use concurrency to describe where multiple computations may happen at the

same time. This is a disambiguation from parallelism where multiple computations do

happen at the same time. Process-oriented programming is a method for applying a

high degree of concurrency within software design [228]. It typically produces many

more concurrent program elements than there are parallel computing resources to exe-

cute simultaneously.

1
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A process-oriented computer program contains multiple isolated software processes

which execute concurrently. As processes are isolated from each other all interaction,

including information exchange, occurs via explicit communication and synchronisa-

tion mechanisms. The explicit nature of interaction in process-oriented programming

underpins its ability to manage complexities arising due to concurrency, such as non-

determinism. However these interaction mechanisms represent a potential overhead in

the execution of process-oriented software.

Computer hardware is moving from systems with a single programmable com-

putation element or core, to multiple programmable parallel computation elements or

multi-core. A high degree of concurrency is critical to utilising the parallel computing

resources made available by multi-core computer processors. If my work consists of

many tasks I can do at the same time (independent tasks) then given a clone of myself I

will be able to do all my tasks in half the time.

Commodity computer hardware, programming tools and operating systems do not

explicitly support process-oriented programming. This means the basic operations on

which process-oriented programs depend have significant overheads. The implication

is that process-oriented software is not as efficient as other programming methods and

may not be able to achieve equal or superior performance.

In the context of this thesis, mechanical sympathy describes the congruence of pro-

gramming models and computer hardware. A mechanically sympathetic computer

program uses computer hardware in efficient manner; progress towards a solution is

taken along the path of least resistance. A mechanically sympathetic programming lan-

guage embeds, or encourages the programmer to use, a programming model which has

an efficient mapping to real computer systems.

In this thesis I seek to demonstrate the potential of process-oriented software, by

minimizing the amount of processor time, memory space and bandwidth consumed

in overheads while achieving the maximum use of available parallel processing facili-

ties. This is important as process-oriented programs have a high degree of mechanical
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sympathy with present and emerging multi-core computer systems (2.7.5). Addition-

ally these benefits can be exploited by other concurrent programming methods through

functional decompositions presented in this thesis (2.4.1) and in related work [228].

1.1 Problem Statement

In order to fully utilise the parallel processing capabilities of modern computer hard-

ware, computer software must utilise a higher degree of concurrency. Scalable software

is software which has increased performance, faster execution or more work completed

per unit time, when additional parallel computing resources are made available to it.

The synchronisation and scheduling overheads of common concurrency mechanisms

mean that in order to build scalable software the typical concurrent work unit (grain-

size [176, 209]) must be relatively large. For example amortizing the cost of a 10ms

synchronisation, reducing it below 5% of execution time, requires a work unit lasting

at least 200ms.

By reducing the overheads associated with a class of concurrency mechanisms, pro-

grammers will be able to introduce more concurrent elements into software without

adversely affecting performance. In turn, such software will make more efficient use

of available hardware and have improved performance as a result. Better performance

may be reduced execution time, reduced response time or comparable execution time

with reduced power consumption as larger numbers of lower powered processing ele-

ments are substituted for fewer higher powered ones.

1.2 Limitations

This thesis does not address the issue of designing parallel software or computer algo-

rithms. In this thesis I explain what is meant by process-oriented software and how this

work allows process-oriented software designs to make use of multi-core hardware, but

do not address the process-oriented design process. I would refer the reader to Adam
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Sampson’s thesis [228] which does much to explain process-oriented software design.

Beyond process-oriented design, there is a large body of work on developing parallel

algorithms, such as Ian Foster’s work [110].

1.3 Contributions

This thesis makes the contributes the following research contributions:

D1. Message-passing between concurrent components can be at least one order of

magnitude faster than presently implemented in common programming lan-

guages or concurrency frameworks. This includes modern multi-processor or

multi-core computer hardware.

D2. The parallel execution potential of software using concurrency for structure can

be efficiently extracted. This demonstrates that process-oriented programming

can be used to build scalable software.

D3. Process-oriented programming has a high degree of mechanical sympathy with

modern multi-core computer hardware. Mechanical sympathy is a key factor in

the applicability, efficiency and adoption of programming languages.

This thesis also makes the following technical contributions:

T1. Development of a highly efficient scheduler for process-oriented systems on

multi-core hardware. The scheduler is designed to support thousands of ac-

tive processes on commodity hardware using runtime decision making based on

heuristics rather than a priori knowledge of the system being scheduled.

T2. Algorithms for synchronous channel communication with choice on multi-core

hardware. These enable communication between pairs of processes using wait-

free scheduler interaction and permitting choice in one of the communicating par-

ties.
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T3. Algorithms for choice across channels and timers on multi-core hardware. These

allow a process to make a choice over a number of communication channels and

a system timer.

T4. Algorithms for supporting explicit priority groups. These scheduler extensions

support priority groups in order to guarantee execution of high priority processes

before low priority processes.

T5. Algorithms for barriers on multi-core hardware with optimisations for cache-

coherence and priority. These provide synchronisation between tens of thou-

sands of software processes while reducing the negative cache impact of access to

a heavily contended resource.

T6. Additional performance for the occam-pi programming language through the

application of machine independent assembly (LLVM). This provides direction

for the compilation of future process-oriented languages.

T7. Development of virtual machine debugging techniques for process-oriented

programming. These provide runtime support for introspective analysis of process-

oriented programs.

1.4 Road Map

Chapter 2 examines the motivations for the use of concurrency in software design and

support for concurrency in programming languages. This can be seen as a review of re-

lated work in concurrent programming techniques and a definition of process-oriented

programming. It contains a history and analysis of hardware support for concurrency

and the development of programming techniques for managing concurrency. It also

establishes tenants of contribution D3 (1.3).

Chapter 3 documents the development of a multi-core scheduler for process-oriented

software. It contains algorithms for implementing core elements of process-oriented
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software such as communication and synchronisation on multi-core systems. These

relate to contributions D1 through D3 and T1 through T5 (1.3).

Chapter 4 describes methods for compiling and executing process-oriented soft-

ware on modern computer systems. The focus is on the occam-pi programming lan-

guage and translating it to machine-independent assembly languages. This relates to

contribution T6 (1.3).

Chapter 5 explores potential debugging and tracing techniques for procress-oriented

programming. These make use of a virtual machine implementation of occam-pi, such

as that provided by the Transterpreter [146]. This relates to contribution T7 (1.3).

Chapter 6 summarises the conclusions of this thesis and discusses some directions

for future research. Attention is given to the direction of current computer software

and hardware development.



Chapter 2

Concurrency

This chapter is an in-depth survey of concurrency support in programming languages,

its origins and trends. The content of this chapter is intended to be accessible to a wide

audience, with many sections essentially readable without much, if any, prerequisite

knowledge. To support this, programming concepts are, where appropriate, analogised

to examples from other domains, for example cookery.

A key purpose of this chapter is to document and analyse a trend towards data-

oriented methods in the mechanisms provided for programming concurrency by pop-

ular programming languages (see 2.2 and 2.7.2). This trend is rooted in the shared

ancestory of popular programming languages, an ancestory which eschews a model

for programming concurrency (see 2.7.1). Recent trends in hardware parallelism have

motivated the need for mechanisms for programming concurrency (see 2.1.3 and 2.6).

This thesis argues that process-oriented programming satisfies the need for a mechan-

ically sympathetic model of programming concurrency on new and emerging com-

puter hardware (see 2.7.5). Furthermore, it argues that process-oriented programming

is more appropriate than data-oriented methods while still maintaining support for ex-

isting data-oriented programming primitives (see 2.4.1).

This chapter is broad in scope and as such the first-time reader may wish to omit

7
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some sections. For the purpose of understanding other chapters the material on paradigms

in section 2.2 and in particular the message-passing paradigm (2.2.2) is essential. From

the material in section 2.3, section 2.3.1 on processes, section 2.3.2.4 on messages and

section 2.3.3 on choice should be read. The full definition of process-oriented program-

ming in section 2.4 is also essential to this thesis. Finally, the memory synchonisation

cost data given in section 2.6.1 may prove useful to understanding the arguments in

chapter 3.

Road Map

Section 2.1 explores two key motivations for the use of concurrency in the design of

computer programs: expression and performance. Expression describes the use of con-

currency to address the parallel nature of the world. Performance refers to the use of

concurrency to utilise parallel computer hardware. This section also considers recent

and on-going trends in computer hardware to increasingly parallel computer systems.

These key elements motivate the importance of research on concurrent programming

languages and their run-time support.

Section 2.2 describes the main paradigms (styles) of concurrent programming: data-

oriented concurrency and message-passing concurrency. Adding to this, section 2.3

details common language operations and primitives for handling concurrency. The

intention is to provide a broad overview of distinct methods for introducing and han-

dling concurrency in computer programs. These provide reference for later sections

and chapters.

Section 2.4 defines process-oriented programming, a specific form of message-passing

concurrency. Critically, the primitives surveyed in section 2.3 are given process-oriented

definitions. This section establishes broadly that process-oriented programming is ca-

pable of concisely expressing other forms of concurrency. This is necessary to establish

the wider applicability of work in this thesis.

Section 2.5 surveys support for concurrent programming in a broad range of pop-

ular and general-purpose programming languages. This section provides an integral
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reference for other sections; however, as a reference, cover to cover reading is not re-

quired. The subsequent section, section 2.6, gives an overview of support for concurrent

programming in computer hardware. The subsection Synchronisation (2.6.1) identifies

the costs of using shared memory for inter-processor synchronisation. The subsection

Interconnects (2.6.2) describes the reasons behind the growth in synchronisation costs in

modern computer hardware. These motivate the need to avoid inter-processor commu-

nication by using paradigms such as process-oriented programming and appropriate

algorithm design as in chapter 3.

Section 2.7 analyses information presented in sections 2.5 and 2.6. The general trend

is for minimal support for concurrent programming with a focus on a data-oriented

style where support is present. This contrasts with process-oriented programming

which uses concurrency as a method for structuring computer software. This trend

is analysed with respect to popular programming languages and a critical aspect of

programming language design, mechanical sympathy, is identified. Finally, key prop-

erties of a process-oriented style of programming are highlighted in relation to new

and emerging computer architectures. It is postulated that process-oriented software is

mechanically sympathetic with trends in hardware development.

2.1 Motivations

The motivations for the use of concurrency in the design and implementation of com-

puter software can be loosely categorised into expression and performance.

Inherent in the creation of a computer program is the act of modelling a problem do-

main and mapping between it and a physical computer system. The programmer (or

designer) produces a model, an abstraction, of a problem for the computer to solve; this

is then expressed such that a computer can produce results or enact a solution. This ide-

alised process can be seen in figure 1. The results produced by the computer are related

to the problem domain in a manner determined by the programmer and the quality

of the model produced by the designer. In reality the designer and programmer are
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Problem 
Domain Model Program Results

Computer
SystemProgrammerDesigner

Figure 1: Idealised view of abstraction between problem domain and computer system.

Problem 
Domain

Program
with implicit

Model
Results

Computer
SystemProgrammer

Figure 2: Simplified view of abstraction reflecting the reality that programs implicitly
derive and embed domain models.

typically the same person, and the modelling step is implicit in the act of programming

as in figure 2. That is to say the programmer does not consciously consider the model

chosen or its implications. This can be problematic, in particular when the results of the

program are to be scientifically rigorous [34].

Very early electronic computers such as ENIAC were programmed by the manipu-

lation of switches and the physical connections between components. This soon gave

way to the input of computer programs in the form of instructions typically stored on

punched cards. The programmer expressed the problem directly in rudimentary ma-

chine operations, assembly language, e.g. load a, load 4, add, store as b. Essentially there

was no abstraction between program and computer operations.
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It takes considerable effort to express complex problems in terms of rudimentary

low-level computer operations. This lead to the development of high-level programming

languages. The first of these to see widespread usage was IBM’s FORTRAN [42]. A

key concern in the development of early high-level programming languages was to

allow algebraic expressions. A program within the computer translates high-level ex-

pressions such as b = a + 4, into low-level assembly code. This program is called a

compiler.

The introduction of early high-level languages, particularly FORTRAN, sees the in-

troduction of commercial (industry) interests into computer programming. High level

languages make computer programming more accessible, for example algebraic ex-

pression is more widely understood than the decomposition of problems into assembly

language. This allows more people to write computer programs and increases the effi-

ciency of existing programmers However, the compiler must be efficient. The assembly

produced by the compiler must have similar performance, in terms of memory space

and computational time requirements, as that produced by a skilled programmer. High

level languages before FORTRAN were not efficient enough to justify their commercial

use [43]. Early high-level languages might slow a computer down by a factor of five,

an unacceptable slow down when some of the most basic computers cost upward of

£200,000 a year to rent 1.

High level programming languages allow program text, source code, to more closely

reflect and express the problem model. A key motivating factor in the development of

most programming languages is the ability to clearly express a given problem domain,

so that the program can accurately capture the model. This is particularly true of high-

level languages developed in the late 1950s and early 1960s. Notable contemporaries to

FORTRAN stand out as examples of this:

• ALGOL was developed by academia to address what were seen as failings in

FORTRAN. Essentially ALGOL focuses on expression of algorithmic computing

1Based on the rent of a basic IBM 1401 $30,000 in 1959 and taking into account inflation based on the
consumer price index.
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for research scientists [41].

• COBOL was developed as a government and industry effort to create a standard-

ised language for business-oriented tasks [208]. It was heavily used in govern-

ment and commercial projects, to such an extent that more than 40 years after its

inception it is still the 24th most popular programming language by usage [246].

• Lisp was developed by academia to express computation in a manner consis-

tent with the lambda-calculus, which permits reasoning about the computability

of mathematical functions [177]. The Church-Turing thesis relates the lambda-

calculus to Universal Turing Machines showing that both express the same func-

tions, and that functions can express all arithmetically computable operations.

This theory underpins the discipline of functional programming which Lisp em-

bodies.

Assembly languages are generally described as second generation languages, with

first generation referring to machine operations represented directly by signals within

the computer, so called machine code. Languages such as FORTRAN and ALGOL are

third generation languages. Much research in the 1960s focused on structuring pro-

grams in third generation languages. One of the most well-known and widely used

developments of this era is a programming paradigm called object-oriented program-

ming [66]. Starting with SIMULA in 1968 [86] and exemplified by Smalltalk in 1973 2.5.27,

object-orientation structures a program as a set of interacting objects. Loosely, each ob-

ject represents a concrete or abstract concept and has a defined interface of operations

it can perform on the behalf of other objects. For example, a toaster object might pro-

vide an interface with set temperature and toast operations. The inner workings of the

toaster are hidden from other objects in the system. This is known as encapsulation. In

principle this allows objects to be built and tested in isolation before being put together

to produce larger programs.

High-level languages provide functionality not directly available in machine hard-

ware. These functions may be provided by a runtime system (RTS), a library of prepared
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code which integrates with a program as it executes, at runtime. The invocation of the

runtime system is (at least in part) embedded as part of the translation from high-level

syntax to machine instructions. This occurs without the programmer needing to be

aware of it taking place. For example if a given computer processor does not support

integer division the programming environment may embed a call to a library function

whenever the programmer divides two integers. Whether the hardware supports the

operation or not, the result of the higher-level programming statement is always the

same (albeit the library function may take longer to execute).

The runtime system may provide a virtual machine which simulates an idealised

computer and hides the details of any particular computer hardware. This simplifies

the task of converting a programming language into machine instructions as it need

only be converted to one type of machine, the virtual one. However making the virtual

machine representation of the program execute with the same performance as a direct

conversion from language to machine instructions is non-trivial [115, 61, 39].

From the 1970s through to the early 1980s research and development focused heav-

ily on third generation languages. The C programming language was released in 1973

(2.5.4) and gains popularity for systems programming, the development of software which

controls a computer’s hardware and provides functionality to other programs. By the

early 1980s C has two major descendents, C++ (2.5.6) and Objective-C (2.5.20) both

of which add object-oriented extensions to the language. The 1970s also sees the de-

velopment of fourth and fifth generation languages; both of these aim to further re-

move the programmer from the low-level detail of the computer. Fourth generation

languages are predominantly data processing languages focused on business needs;

a third generation language is used in a defined architecture such that programs can

be combined and reused and support tools exists to manage data and programs to-

gether [171]. Fifth generation languages and logic programming languages, such as

Prolog, remove the programmer from specifying a solution to a problem, instead the

properties of a valid solution are specified and the computer provides valid solutions

within these constraints [75].
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Despite the significant effort invested in fourth and fifth generation programming

language research and development they have gained very limited popularity [246].

This is an important observation that is addressed in the analysis presented in sec-

tion 2.7.

The need to handle and exploit concurrency emerges almost as soon as the first

electronic computers are put in to use and gains weight as a research topic as computers

grow in scale and speed [83, 90, 109, 119, 106]. Computers are constructed from multiple

concurrent components which do not all work at the same speed. Rapid advances in

early electronic computers quickly exposed these operational asymmetries. This creates

a need to express the concurrency present in the computer so that it can be managed.

Further to this, with the relatively high cost of computers and associated overheads2

prior to the introduction of microcomputers in the 1980s, it was desirable that all aspects

of the computer be utilised as fully as possible. This requires that multiple concurrent

activities take places to maximise performance.

2.1.1 Expression

Expressive power in programming languages is conceptually the same as in natural

language. For example, consider the instruction “bake a sponge cake”, this is a high-

level statement than relies on the knowledge of what it is to bake and what a sponge

cake is and how the two can be related. This instruction can be decomposed into sim-

pler components, e.g. cream together 100 grams of sugar and butter, beat in an egg,

combine 100 grams of flour, place in a baking tin, place the tin in an oven at 180 degrees

celsius for 25 minutes. Each of these simpler instructions relies on further conceptual

and specialised knowledge. Decomposition of these instructions can be continued until

a base level is reached, e.g. turn 90 degrees right, lift right arm 50cm, move right arm

30cm forward, grasp cupboard handle in right hand, move right arm backward 30cm,

and so on. This is essentially assembly language. Each level of decomposition moves

2Wages for the team of programmers and administrators along with the cost of electricity.
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from an abstract generalised solution to a concrete implemented solution. However

successive levels of decomposition obscure the high-level intent; the entire sequence of

operations must be read and considered in order to realise that the intent.

With respect to figure 1, if the problem domain contains concurrency then the de-

signer can either include this in the model, or abstract it away. Support for expressing

concurrency in the programming language, programming paradigm and its support

tools, broadly the programming system, will affect the designer’s decision in this respect.

This is particularly true for implicit models as per figure 2.

Concurrency is generally present in any model which interacts with external enti-

ties. An external entity is anything outside the control of the computer. Critically this

is a concern for any computer program that interacts with a user, as the user can po-

tentially produce new input or behaviour at any point. This concern is often mitigated

by only allowing user interaction at defined points, but this abstraction can reduce the

quality of the interaction experienced by the user. In many cases this abstraction is

not acceptable, computer games being one prime example. While playing a computer

game, the player expects it to respond immediately to their input.

Above I defined an external entity as anything outside the control of the computer

– this is an idealised model. In reality a computer consists of multiple distinct compo-

nents all operating concurrently. Thus events concurrent to computation can originate

from both inside and outside the computer. A specialised piece of software, the oper-

ating system, handles these internal and external events, passing them off to running

programs as appropriate. While normal computer programs can ignore concurrency, it

must be explicitly handled when developing the computer’s operating system [244, 46].

Concurrency is also present in models which attempt to capture the behaviour and

interactions of real world entities. For example, in a model of bird flocking, each bird

observes the environment and decides its actions independently of and concurrently

to other birds. This model can be programmed such that the behaviour of each bird is

computed sequentially; however, expressing the model and programming it in this way

is a specialisation which loses accuracy with respect to the model [35]. That is to say,
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readers of the program code, including the compiler, are unaware of the concurrency in

the model. There is a danger that the implicit ordering introduced is relied on in such a

way that affects results [136].

2.1.2 Performance

While expression relates to how a computer program captures the model, performance

relates to how the program makes use of the computer hardware. Just as the problem

domain can contain concurrency, if the computer has multiple programmable computa-

tion elements then the hardware also contains concurrency. If concurrency exists in the

computer’s hardware then it is desirable to use this to improve performance. Improved

performance might mean reduced execution time as work is divided between elements,

or reduced response time to events if background work is done on one element while

others are kept available to respond to new events. Improved performance could also

mean more efficient use of energy by dividing work between low-power computational

elements as oppose to using a single high-power element (2.1.3) [196].

In order to take advantage of concurrency in the computer, concurrency must be in-

troduced into the program. If the model does not include concurrency then this concur-

rency exists purely for performance. This is the case in the parallelisation of algorithms.

A textbook example of this is the Mandelbrot set [228]. A model for generating a fractal

image from the Mandelbrot set is to divide the image into pixels (points) identified by

coordinates horizontal x and vertical y, and a computation is then performed for each

pair of x and y to derive the colour of that pixel. As the order of these computations

does not matter to the model, in principle they can be programmed to execute concur-

rently. This would allow the programming system to execute as many as possible in

parallel making use of all available concurrent computation elements. The Mandelbrot

set is an example of an embarrassingly parallel problem: a problem that can in principle

use all available computation elements without any significant alterations to its model.

If concurrency exists in the model then it can be expressed in the program and thus
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the model utilises the computation elements directly. With reference to the bird flock-

ing example in section 2.1.1, if the birds are concurrent components their behaviour can

be computed in parallel by available parallel computation elements. Direct exposure of

model concurrency to hardware concurrency may not always be appropriate for per-

formance. The model may either have too little concurrency and must be parallelised

or it may have too much concurrency and must be serialised. In this thesis I seek to

address the latter of these concerns.

The programmer should not need to optimise out model concurrency to achieve

performance. A program should capture all concurrency present in the model it ex-

presses. Hence where additional hardware is available the program and hence the

model can make full use of it. By extension if further performance is required the pro-

grammer should be free to parallelise without concern that their optimisations reduce

the applicability of the program to systems where hardware is unavailable.

2.1.3 Timeliness

The work presented in this thesis is timely because computer hardware is moving from

systems with a single programmable computation element or core, to multiple pro-

grammable parallel computation elements or multi-core. Historically a computer proces-

sor, central processing unit or CPU, only had a single core. I will use the word processor

when the number of cores is not relevant.

The shift in design toward multi-core has been necessitated by the reaching of the

physical limitations associated with making a processors go faster. In order to increase

the processing speed of the processor either the clock frequency (rate of instruction

execution) must be increased, or additional hardware must be added to increase the

internal parallelism (executing multiple instructions simultaneously).
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2.1.3.1 Energy Usage

The power consumption of an integrated circuit (and hence processor) is approximately

proportional to the clock frequency [140]. This might lead one to believe that a proces-

sor can run twice as fast simply by doubling its clock frequency and consume only

twice as much power in doing so. However, as clock frequency is increased the quality

of the signals within the processor is degraded as there is less time for internal volt-

ages to change and be appropriately recognised. To counter this degradation the sig-

nalling voltage within the processor can be increased, making the signals clear again.

Ohm’s Law tells us that power consumption is proportional to the square of the volt-

age. Furthermore as the processor is operating faster it requires more buffers to medi-

ate between its internal speed and the speed of the rest of the hardware, which increase

the size of the integrated circuit and hence its power consumption (via capacitance in

Ohm’s Law). Therefore if we increase the clock frequency by a factor of two, increase

the voltage by 25% and add 25% more components to mediate the increased speed, the

processor now consumes approximately four times as much power.

Electrical energy (power) consumed by a computer processor is ultimately con-

verted to thermal energy (heat). The energy input moves electrons within the processor

which encounter resistance (much like the friction we encounter pushing a stone along

the ground). This resistance causes energy to be lost from the motion of the electrons

and be converted into heat. If we increase the power input to the processor more heat

is generated. This heat increases the internal temperature of the processor. At higher

temperatures the particles which make up the processor have more energy and move

more erratically. Computation within the processor relies on the predictable nature

of the flows of electrons within. Beyond a certain temperature the processor ceases

to function predictably due to the erratic motion of the electrons. Cooling can reduce

the temperature and allow the processor to function, but cooling in turn requires more

power and space. Fundamentally the maximum power we can effectively put in to a

computer processor is bounded. In turn this limits the maximum clock frequency and

the linear execution speed.
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2.1.3.2 Parallelism

There are three approaches to adding parallelism to a processor: flow optimisation (out-

of-order execution and associated techniques), single instruction multiple data (vector

processing) and multiple instruction multiple data (multi-core). Michael Flynn’s work

provides a taxonomy of these architectures and rigorous analysis of the performance

implications of each [109].

Internally a processor is divided into elements which perform different tasks, such

as fetching data from memory or adding numbers together. Simplistically, flow optimi-

sation such as out-of-order execution attempts to keep all of these elements busy doing

meaningful work by looking ahead in the linear sequence of instructions and doing

things ahead of time if the capacity is available. This has its limitations, foremost of

which is that an instruction may be dependent on the result of an earlier instruction.

The sequence of instructions can be thought of as a recipe. Imagine we are making

marinaded steak: we cannot fry the beef before it has been marinaded, and we can-

not marinade the beef before we have made the marinade; however, you can make the

marinade while I go and buy the beef.

Single instruction multiple data (SIMD) or vector processing applies the same pro-

cessing to many pieces of data simultaneously by replicating very specific parts of the

processor. To make another cooking analogy, a particular vector processing instruc-

tion can be thought of as a toaster with eight slots. If we want to make toast for four

people (two slices each) then it is four times faster than a two-slot toaster. However,

if I am just making toast for myself then there is no benefit (in fact we waste power

and space on the unused slots). Furthermore as the vector instruction applies the same

treatment in a single step it requires us to all arrive at the toaster at the same time with

the same requirements. Or it requires some complex engineering so as to work out

how we can toast a crumpet on high and a pitta bread on low at the same time. The

overhead associated with this coordination limits performance gains. That said, where

the same processing is to be applied to a large number of data items simultaneously

vector processing is ideal. It is commonly used in computer graphics (processing many
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pixels simultaneously) and is the basic architecture of most modern graphics proces-

sors [194, 29].

Multiple instruction multiple data (MIMD) processing replicates enough of the pro-

cessor’s components (in units we call cores) such that it can process multiple different

instructions on multiple different pieces of data simultaneously, or give the impression

of doing so. Taking the earlier toaster example, instead of having one eight-slot toaster,

we now have four two-slot toasters. Each of these toasters can be toasting bread at dif-

ferent settings. This multiplication of computational capacity adds the need to appro-

priately divide tasks and coordinate between them. While this problem can be tackled

in hardware, particularly in how cores should be connected together, the majority of

the task of achieving increased performance is shifted to software.

While multiple processor systems have been part of large-scale computers such as

those used as servers (providing facilities to many users) or in scientific applications,

only relatively recently have multi-core processors become commonplace in commod-

ity computers. The history of research on software engineering techniques to make use

of multiple processors and by extension multi-core systems is long; however, the com-

monly adopted practices in commodity software tools are typically ineffective in both

application and implementation (see 2.2.1).

2.1.3.3 Processor Development Trends

It is worth discussing the widely cited article “The Free Lunch Is Over” by Herb Sut-

ter [242]. Sutter’s seminal article was published shortly after Intel and AMD, the largest

commodity computer processor vendors, announced their respective moves to produc-

ing multicore processors rather than attempting to increase processor clock speed. He

demonstrates the motivation for a shift to hardware parallelism by presenting data plot-

ting the transistor count, clock speed, power consumption and performance per clock

of processors from 1970 to 2005. His data (updated in 2009) shows a clear plateau by
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2003 in all measures except transistor count. Figure 3 shows a smaller data set3 com-

paring some of the same measures as Sutter. The broad trends match those of Sutter’s

findings: by the early 2000s clock speed and power consumption plateau, but transistor

count continues to grow exponentially.
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Figure 3: Trends in CPU clock speed, transistor count and power consumption.

Clock speed is the rate at which the clock changes inside the processor. Every clock

cycle the next electrical signal (on or off) passes between connected components. It is

the fundamental rate at which the electronic components do work. The clock speed

of a processor is bounded by power input. This is in turn bounded by the amount of

heat a given area of silicon can dissipate. Infamously, one generation of Intel Pentium

4 processors had a thermal dissipation per cm2 close to that of a nuclear reactor.

3Derived directly from manufacturer data sheets.
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Performance per clock cycle measures how many instructions are executed per clock

cycle. Typically less than one instruction is executed per clock cycle, as it may take a

component within the processor many cycles to compute its result. However using su-

perscalar techniques such as pipelining and branch prediction, it is possible to raise this

number to around five instructions per clock. These techniques require large amounts

of additional transistors within the processor and are ultimately bounded by the de-

pendencies that exist within any linear sequence of instructions.

Transistor count within processors continues to increase because the physical limits

on transistor size have not yet been reached. This means that with successive genera-

tions of manufacturing technology smaller and smaller transistors can be built, which

in turn means more transistors can fit in the same physical area. Smaller transistors

also require less power to operate. Hence for a fixed area of silicon and a fixed power

consumption, the number of transistors can continue to increase (Moore’s Law [190]).

Given that the clock speed limit has been reached and the performance per clock is

bounded, the only way to use the increasing number of transistors (and yield a signifi-

cant performance benefit) is to duplicate large elements of the processor. This duplica-

tion creates multiple independent cores of computation within the processor and hence

multi-core processors are born.

Sutter argues that programmers have been depending on progressive performance

improvements between processor generations to make their software run faster. Up

until 2003 computer programs would run 50% to 100% faster when the next generation

of processor was released. This performance benefit is gained without any change to

the program itself, hence the so called “free lunch”. With the shift to multi-core this per-

formance benefit is gone. Sutter concludes that programmers will need to rewrite their

software and adopt radically different design approaches in order to increase software

performance. Specially, programmers will need to use concurrency.

Going beyond Sutter’s observations which are strongly rooted in the limits of man-

ufacturing technology, there are other pressures which motivate a shift to multi-core

processors.
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An interesting parallel can be drawn with the automotive industry where due to

instabilities in oil supply, rises in fuel prices and regulatory pressures, a new emphasis

on efficiency and alternate fuel sources has become the norm. It could be argued that

without these external pressures much less emphasis would have been given to the

development of more efficient engine technology. Looking ahead it is possible to see

similar pressures influencing the computer hardware industry.

The global population is growing and is expected to continue doing so for the fore-

seeable future [247]; this leads to significant pressure on resources. Energy is one re-

source with growing consumption, but also has a shrinking supply due to pressures

to phase out fossil fuels and nuclear energy. It is quite possible that global pressure

to reduce energy consumption will further engender a shift to multi-core and multi-

processor computer systems, based on the assumption that they are more efficient in

terms of computation performed per unit of energy consumed. We already see this

pressure in two sectors: computer data centres and mobile devices [154, 54]. In com-

puter data centres small changes multiply to create large savings, for example reducing

the power consumption of 10,000 servers by just 1W saves 10kW of power resulting in

an annual saving of £5,000 [89].

In mobile devices battery capacity is limited and increasingly only slowly, hence

efficiency savings increase the attractiveness of devices to consumers. Consumers want

the next latest mobile device to be faster, but have the same or better battery life. A

device which was twice as fast, but had half the battery life would be a product doomed

to failure.

Aside from energy, the resources used to make computers are under pressure or are

otherwise at risk. Copper, one of the most commonly used conductive metals has an

uncertain future supply, giving it potential price volatility similar to that of oil. The

supply of rare earth elements, commonly used in semiconductor production and com-

puter batteries is dominated by China, creating a scenario similar to OPEC’s control of

global oil supplies (and prices). These forthcoming pressures on resources will favour

computer parts which are less resource intensive to produce. I suggest that a multi-core
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facilitated reduction in processor clock speed can reduce the complexity of manufactur-

ing a given processor, and the complexity of support electronics, particularly if some of

the cores take on specialised functions [180].

2.2 Paradigms

Programming paradigms are generalisations of concepts from one or more program-

ming languages. They are not typically formal definitions, but rather styles of im-

plementing computer programs. Different programming languages support different

paradigms. It is possible to program any paradigm in any Turing complete program-

ming language; however, the size and hence complexity of the resulting program code

will be greatly increased if a style of programming does not map well to those sup-

ported by the programming language used. This is similar to how natural languages

possess strengths and weaknesses in the expression of certain topics, biases developed

from the needs of the native speakers. For example many Asian languages such as

Japanese and Korean possess a range of pronouns and associated honorifics which al-

low the concise and precise expression of the social relationship between the speaker,

listener and third parties. This is necessitated by the social norms of these countries;

however, expressing the same relationships in English would be difficult without seem-

ing overly verbose.

The fine details of what any given programming paradigm involves are often dis-

puted, object orientation is one such example [149]. This section defines typical con-

current programming paradigms for clarity and later reference. We consider paradigm

to mean pattern, and therefore concurrent programming paradigm to mean a set of

techniques for achieving and managing concurrency.

Concurrency in computer programming is the potential for one or more elements of

a program to be executing simulanteously. To give a generalised example, a computer

may be reading input from the user, calculating a result and drawing some graphics

to the display at the same time. As described, the tasks occur in parallel; however,
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depending on the computer’s hardware, the programmer’s implementation may in fact

be executing them in a tight looped sequence such as to simulate parallel operation.

When programming this example in a concurrent programming paradigm, each of the

three tasks would be written separately. The final program would combine these tasks

and in doing so implicitly or explicitly specify how they interact. The programming

language’s compiler and runtime system would then execute the tasks in parallel or

sequentially depending on the hardware support (and required interactions between

them). In summary, a concurrent programming paradigm allows the programmer to

explicitly admit the concurrent execution of parts of a program. Concurrency is a gateway

to parallelisation.

We focus on paradigms for structuring computation within a single (mostly ho-

mogeneous) computer system, not a distributed environment, although many of the

paradigms are extensible to such an environment. Observationally there are two main

concurrent programming paradigms, data-oriented concurrency and message-passing

concurrency. The following subsections 2.2.1 and 2.2.2 explore these by discussing im-

plementation exemplars.

2.2.1 Data-oriented

In a data-oriented concurrent program the elements executing concurrently interact

over one or more units of shared data (shared memory). Typically one or more synchro-

nisation mechanisms are provided allowing the programmer to structure interactions

over the shared data.

In a simplistic example a program might split into two concurrent threads of execu-

tion with each taking half the work. A synchronisation mechanism would permit the

two threads to merge back down once the work has been completed.

Minimal work is required to add some level of data-oriented concurrency to existing

(non-concurrent) software code. Synchronisation mechanisms such as locks (2.3.2.1) are
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added to data structures to be shared among concurrent components. When one com-

ponent is modifying a shared resource it locks it so that other components do not inter-

fere (mutual exclusion), this is described as taking or acquiring the lock. This methodol-

ogy is typified by POSIX threads and their associated operations (2.5.24).

Locking, or some form of mutual exclusion, is required to maintain the relative

ordering of operations on shared resources (2.3.2.1). To give a contrived example, con-

sider two chefs attempting to cook food in a single kitchen with no regard for each

other. One might pick up the flour and move it, leaving the other unable to find it. One

might place a pan on the hob, only for the other to turn it off. One might put chillies in

the other’s chicken soup. Without close coordination the list of possible problems that

can arise is seemingly endless. If the two chefs cannot work together then we must only

allow one in the kitchen at a time by placing a lock on the door. This is in essence what

we are doing when adding locks to shared resources in a computer program. Whether

the lock is on the kitchen door, or whether there are separate locks on each of the items

in the kitchen is referred to as the granularity of locking, with the former being course-

grain locking, and the latter being fine-grain locking.

The apparent simplicity of adding mutual exclusive locking belies the (often sub-

tle) complexity it introduces. A degree of overhead is placed on the programmer: they

must remember to acquire the appropriate lock when modifying shared data, and also

remember to release it. Forgetting to release a lock will, in all likelihood, result in a pro-

gram that ceases to function, as concurrent components attempt wait for a lock which

is never to be released. This is a condition called deadlock.

Locking can be subsumed in to the programming language such that the program-

mer does not need to worry about it or not consider it explicitly; Java’s synchronized [117]

keyword is one example of this (2.5.17). However another danger quickly arises, as-

suming I have two locks A and B and two concurrent components X and Y, where

component X locks A then B, and component Y locks B then A. If the execution of these

components is interleaved such that X locks A, then Y locks B, both components will

deadlock attempting to obtain their second lock. This scenario can be avoid by placing
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an order on locks, such that B can never be taken before A (changing the behaviour of

component Y). Critically such an ordering cannot easily be applied by a programming

language or its support systems, and can place a significant burden on the programmer.

Given the stated complexity of multiple locks it would seem logical to have fewer

locks. However, using fewer locks means that concurrent components spend more

time competing or waiting on shared data, although there is reduced locking overhead.

Although performance may not be the primary reason for a use of concurrency (2.1),

increased competition for fewer locks or from more concurrent components sharing

the same data is detrimental to performance. Take the extreme example of two com-

ponents which share data via a single lock. If both components spend all their time

manipulating shared data, but only one can be active at a time due to the lock, then

the performance is theoretically the same as having a single component with no lock.

In practice performance is worse than a single component without a lock due to the

overheads of the lock, time spent switching between components and other hardware

concerns. In fact the reality is that performance for naive decompositions of existing

non-concurrent code may not show significant improvement [45], unless they contain

what are described as embarrassingly parallel problems (2.1.2). Embarrassingly paral-

lel problems are those that are inherently decomposable by their nature, thus leading

to concurrent solutions with minimal or no shared data.

2.2.1.1 Vectorization

When dealing with computations which are inherently data-oriented, but admit an ob-

vious decomposition, such as the Mandelbrot set or processing image elements, then

vectorization can be applied. Simplistically vectorization takes program code required

to process a single unit of data and replicates it across all available processing resources.

This might use single instruction multiple data instruction level parallelism as men-

tioned in section 2.1.2. For example if we need to add one to 1000 numbers in an array

and our processor has four arithmetic units, vectorization could give close to a four

times speed up (bounded by data transfer restrictions). Vectorization might also use
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multiple processor cores, each of which might be internally parallel. Critically vec-

torization is a very specific form of concurrency where all concurrent components are

executing the same code in parallel on separate pieces of data so as to eschew the need

for synchronisation and locking.

Intel’s Thread Building Blocks (2.5.16) is an example of vectorization on modern

multi-core processors. Nvidia’s CUDA (2.5.14) provides similar functionality for multi-

core graphics processors which have a very high degree of instruction level parallelism.

OpenCL (2.5.14) combines both by providing programming language extensions for

constructing parallel code on both modern multi-core and specialised processors such

as graphics processors.

On a theoretical level vectorization techniques can be seen as a special case of Bulk

Synchronous Processing (BSP) [248]. In BSP a number of independent processors per-

form computation while exchanging messages to update or access non-local data. At

regular intervals all processors synchronise state, processors which reach a synchroni-

sation point wait for all others to reach the same point. Theoretically BSP has optimal

utilisation of computation resources for applicable algorithms. With respect to vector-

ization, the synchronisation of state occurs when all parallel operations complete and

the program is running sequentially before more parallel operations are initiated. The

implication is that vectorization has near optimal utilisation of computation resources.

A major caveat is that vectorization does not provide independent processors. Parallel

computations must be in step at an instruction level to gain optimal performance.

2.2.1.2 Transactional Memory

Transactional memory takes inspiration from database transactions to alleviate syn-

chronisation issues such as deadlock when using locks in data-oriented concurrency [122].

Instead of locking shared data, updating it and releasing the lock, transactional mem-

ory systems allow the programmer to declare a group of operations which occur as an

atomic transaction. A transaction and its results either occur in full and are made visible

to other concurrent components together, or are not observed to have occurred at all.
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To take a simple example, let us look at incrementing a number. There are three

operations involved:

1. Read the present value from memory

2. Calculate the new value by adding one

3. Store the new value back to memory

If two concurrent components execute these operations at the same time such that they

interleave then from a starting value of n then the possible output states are n + 1 and

n + 2. Obviously n + 1 is not the expected result of incrementing a number twice.

With transactional memory, these three operations would be grouped together as a

transaction guaranteeing that the memory written to in step 3 had not changed since

step 1 completed.

Most computer hardware supports small transactions similar to the above on ma-

chine words, which are typically four or eight bytes in size [143]. The relative com-

plexity and cost of implementing large transactions in hardware has kept transactional

memory out of all but the most specialised processors, for example Sun’s Rock pro-

cessor [253], Azul’s Vega architecture [73] and IBM’s Blue Gene/Q [121]. As computer

programs work on much larger pieces of data than a few bytes the majority of research

on transactional memory has involved software transactional memory (STM) [232].

The transactional memory approach is optimistic as arbitration only needs to occur

when two concurrent components conflict, for example manipulating the same data

at the same time. Locking itself can be seen as pessimistic as the cost of taking the

lock is always paid regardless of whether there is contention to access the shared data

or not. That said, arbitration of arbitrary size transaction is complex and potentially

costly. While there are many different techniques most involve locking memory at a

word or region level for some or all changes. This also makes software transactional

memory more suited to managed runtime environment languages such as Java, where

all runtime activity is at some level arbitrated by the language runtime. It is also im-

portant to note that STM itself does not provide any means for synchronising threads.
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In points of the program where synchronisation is required (e.g. producer with con-

sumer) external means must be used in order to avoid naive polling. This means that

transactional memory is not a replacement for more general concurrency, but is another

tool for data-oriented concurrency.

While simplifying the programming model required to safely use and manipu-

late shared data between components, STM has a relatively high cost (in machine re-

sources). Critically these costs may not always be amortised by the increase in con-

currency gained, particularly when compared to an efficient fine-grain locking solu-

tions [104]. To realise the potential of transactional memory, it appears that hardware

support is required. Intel have announced Transactional Synchronization Extensions

for their future processors [142] a restricted form of transactional memory, suggesting

transactional memory will soon see more widespread applicability. However, Intel’s

announcement should be counterpointed by the observation that the number of mobile

devices embedding non-Intel processors, but possessing multiple cores, far outstrips

the deployment of Intel processors.

2.2.1.3 Partitioned Global Address Space

A number of parallel programming languages have adopted a programming model

based on a partitioned global address space (PGAS) [76]. Data-oriented programming

gives the impression that all memory is equally accessible from all points of the sys-

tem. In large computer systems this is not true, even if all memory is accessible from

any point in the system the performance of memory will vary based on its distance to

the processor (2.6). Typically each computational element will have an area of mem-

ory which is local and has better performance. A PGAS model acknowledges these

differences by allowing the placement of computations within partitions so they may

use fast local memory and minimise communication with remote memory. Many lan-

guages designed for parallel computation on massive computer systems use a PGAS

model, examples include Chapel (2.5.7), X10 (2.5.29) and Unified Parallel C (2.5.28).
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2.2.2 Message-passing

In a message-passing program components executing concurrently interact by send-

ing messages to each other. Program components are isolated and do not share any

memory, data is shared by sending it (by value) in a message from one component to

another.

To mirror the example in section 2.2.1, a program component would split the work

into two separate messages. Each message, containing half the work, would be sent to

a worker component. When a worker finishes it would send a message back containing

the completed work.

Message-passing is inherently concurrent due to the way it structures program com-

ponents. This contrasts with data-oriented concurrency which is for the most part an

extension of sequential programming techniques. For this reason, data-oriented con-

currency is often favoured, because it would appear to require less restructuring when

applied to existing program code. However by making concurrency an explicit part

of program structure, message-passing concurrency removes or mitigates many of the

pitfalls associated with data-oriented concurrency, such as the need for locks on shared

data. There is also an obvious mapping between a message-passing software design

and distributed physical components, for example separate computers connected via a

communication network. We can see how processes could be distributed between the

computers and messages passed via the network, but it is less clear how a data-oriented

design would be mapped to the same structure.

Programming languages and systems for message-passing concurrency have been

heavily influenced by mathematical models of concurrent computation. These models

can be broadly divided into two main formalisms:

• The Actor model [130, 74, 25],

• Process calculi (e.g. CSP [134, 226], CCS [183], the pi-calculus [185, 184] and join-

calculus [111]).
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These various computational models share much in common, in part due to a cross-

pollination of ideas between their creators. The most significant difference is the Actor

model’s use of addressed messages conveyed between processes by a medium with no

defined properties, which contrasts with the use of well-defined communication chan-

nels to carry messages within the process calculi. Also of note is the variance between

process calculi with respect to whether communication is asynchronous or not; Actor

model communication is asynchronous. These two differences can be analogised as

the difference between posting a letter and making a telephone call. Asynchronous

message-passing is like putting a letter in the post with an address on it: we cannot

make any assumptions about when (or even if) the destination will receive the letter. In

fact I could send two letters on two successive days, and they might arrive in the oppo-

site order. Synchronous communication is like making a telephone call, after dialling

the number I wait, when the other party picks up I can convey my message then put

down the phone safe in the knowledge that my message has reached its destination (as-

suming the other party was listening). This synchronous communication makes most

sense with channels, which could be likened to connected phone lines. Once I’ve sent

my first message I leave the line connected; when I come to send another message I

simply speak again and wait for an acknowledgement from the other end. The channel

guarantees the order of these two messages (unlike the two letters).

Pragmatically it is possible to argue that the Actor model and process calculi rep-

resent broadly the same functionality. Synchronous communication and channels can

be implemented on top of an asynchronous communication medium as demonstrated

by the Transmission Control Protocol (TCP) which underpins the modern Internet and

World Wide Web [243]. However this comes with considerable associated complexity

in order to manage reordering and loss of data, multiplexing and timing issues, as at-

tested to by TCP’s 85-page specification, numerous supporting documents and widely

documented implementation bugs. Conversely, implementing asynchronous commu-

nication with synchronous channels can be achieved by providing all processes with

a channel to a mailbox process, these mailboxes are in turn connected to a post office.
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When a process wants to send a message it puts it in its mailbox, which in turn sends it

to the post office for appropriate routing. To receive new messages the process simply

queries its mailbox. The obvious contrast between these two examples derives from the

fact that it is simpler to weaken the strong guarantees provided by synchronous com-

munication and channels, than it is to add guarantees to asynchronous communication.

In terms of implementations we see Actor model based concurrency implemented

in many actively developed programming languages; notable examples include: Erlang

(2.5.11), Clojure (2.5.9) and Scala (2.5.26). The Actor model itself and these implemen-

tations have been heavily influenced by Smalltalk (2.5.27). Smalltalk’s influence can be

seen in mainstream languages, such as Objective-C (2.5.20), where messages are sent

to objects to invoke methods. Process calculi inspired concurrency has had less ob-

vious influence on modern programming languages; however, notable examples are:

Ada (2.5.2), Concurrent ML (2.5.10), Go (2.5.13), occam (2.5.21) and XC (2.5.30). His-

torically we see CSP [226] having the most influence on modern programming lan-

guages, largely through the work of Bell Labs on the Unix operating system [216],

Plan 9 [203] and languages such as Newsqueak (2.5.13). Within the super-computing

and high-performance computing communities we see use of Message Passing Interface

(2.5.19) to support portable message passing between different systems and languages.

2.2.3 Other Paradigms

Having discussed the two main concurrent programming paradigms it is important to

relate these to specific cases of concurrency in other paradigms.

In event-driven programming components are defined to handle (be activated on) ex-

ternal or internal events. This technique is commonly used in user interfaces where the

program is principally driven by events from the user such as mouse clicks. Events

can occur concurrently, but might be queued and handled sequentially, particularly

if they share data. If components can be executing concurrently and data is shared,

then data-oriented concurrent programming techniques will need to be applied. Alter-

natively event-driven programming can be accurately modelled by message-passing,
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where events become messages to concurrent components which handle them.

Functional programming expresses program components as mathematical func-

tions. In a pure functional programming language functions have no side-effects or

state; they deterministically compute a result from their input parameters. This means

that functions do not share state and hence many of the pitfalls of data-oriented con-

currency are avoided. Additionally, as a function’s output is wholly determined by its

input, thus it is possible to use functions themselves as transactions in software transac-

tional memory systems (2.2.1.2). In a lazy functional language computation of function

results is deferred until the results are required; alternatively these results could be

computed concurrently in what is often referred to as a promise or future (2.3.2.5). This

is a form of automatic parallelisation and does not in itself provide an expression of

concurrency. Furthermore as functions are typically small it is not efficient to execute

them all concurrently, therefore the complexity of functions must be computed and an-

notations added to decide direct concurrent execution [135]. Allowing the programmer

to manage the execution order of concurrent functions is a key component of the Cilk

programming language (2.5.8).

Stream programming is a limited form of message-passing where data streams move

through a static network of concurrent components [116]. This structure is effective for

digital signal processing applications such as image, video or sound data. Data mes-

sages contain very small pieces of data such as image pixels and are buffered between

concurrent components. This allows concurrent components to be scheduled so that

multiple instances of the same component are executing in parallel using vectorising

hardware such as graphic processors [62]. The primary function of stream program-

ming systems is the efficient automatic placement and scheduling of concurrent compo-

nents to achieve maximum throughput this is aided by the use of static networks [156].

As such stream programming is specialised to parallel programming and asymmetri-

cally concurrent or reactive systems.

Coordination or generative languages such as LINDA provide a hybrid between

data-oriented and message-passing approaches [113, 114]. In LINDA specifically, data
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is shared between concurrent components in a globally accessible and persistent store

called a tuple space. Concurrent components read from and write data (tuples) to the

tuple space. Importantly, reads to non-existent tuples wait for the tuple to become

available and on completion a read removes the tuple from the tuple space (unless di-

rected otherwise). Hence while the shared store is data-oriented it provides explicit

communication. In a sense the tuple space is an array of buffered communication chan-

nels (2.3.2.4). Coordination languages draw heavily on the CSP process calculus, and

the Ease coordination language has been referred to as process-oriented (2.4) [102].

2.3 Primitives

There are many different terms in use for what can be seen as broadly similar concepts

used in the programming of concurrent computer software. For example the terms

process, thread, actor and agent are all used (with varying semantics) to mean concur-

rently executing parts of a computer program. This section describes common primi-

tives available in programming languages. Specifically it explores unifying names and

definitions of each for use within this thesis.

2.3.1 Processes

Processes are the concurrent unit of execution in process-oriented programming. The

use of the word process originates in multiprogramming systems of the 1960s and de-

fines an executing computer program and its current state (or context). This disam-

biguation, with respect to program, is required as there may be multiple running in-

stances of a given program each with their own state. Thus the prevailing understand-

ing of the term process is that of an operating system defined construct for managing a

given execution of a program.
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The operating system mediates interactions between processes and enforces bound-

aries; for example processes may not be able to write to the memory space of other pro-

cesses. To the operating system there is one process per execution of a program. While

most operating systems allow programs to create additional processes, each of these is

considered a separate running program with its own protected state.

Many names are used for concurrent units of work with varying semantics. As

noted above the term process refers almost universally to isolated units of concurrent

computation (separate program invocations). In most programming languages these

are considered operating system managed primitives. This definition is generally com-

patible with the definition of processes in process calculi (2.2.2).

2.3.1.1 Threads and Fibers

The most commonly mentioned unit of concurrent computation is the thread. Threads

are an operating system concept with similar origins to processes; however, whereas

processes are isolated program instances, threads are concurrent elements of the same

program. From an operating system standpoint, threads divide a process into sepa-

rate concurrent units of execution all of which operate within the process’s memory

and state. Threads may be managed by the operating system, kernel threads, giving

them a similar level of support to processes; these threads are essentially light-weight

processes. This model is typified by POSIX threads (2.5.24). Alternatively threads

may be managed by the process within which they run, user threads: this can be done

without operating system support as in GNU Portable Threads [6] and Java Green

Threads [198].

There is a general understanding that threads are pre-emptively scheduled. When

there are more threads than processor cores to execute concurrent elements in parallel,

threads must be swapped in and out of processor cores. In a pre-emptive environment

this can happen at any point. For example when a thread has spent a certain amount of

time executing it is swapped in order to give another thread some time to execute, thus

allowing all threads to make progress. Imagine I have two pans of soup to warm up,
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but only one hob, I can swap the pans at regular intervals so they get an equal share of

the heat. I am pre-empting the heating of one pan whenever I swap to another. I could

also pre-empt both and cook some bacon on the hob. The significant danger in this

example is that if I try to divide time between too many pans I will make no progress

cooking any food 4.

The alternative to pre-emptive scheduling is cooperative scheduling. In coopera-

tive scheduling components are only swapped out when they release the processor.

For example a component might do as much work as it can then release the processor

so other components can produce more data for it to work on. Cooperative schedul-

ing is commonly used with event-driven programming (2.2.3) where components that

process events release the processor after they finish handling a given event. Cooper-

atively scheduled light-weight processes are sometimes called fibers [193]. However,

scheduling concerns aside there is no difference between threads and fibers except a

perception that the latter require fewer resources to implement.

2.3.1.2 Actors, Objects and Agents

In discussing message-passing concurrency we mentioned actors and the actor model

(2.2.2) [130]. The actor model has well-defined semantics [130, 25, 74]; however, the

behaviour an actor can possess has very few restrictions. Essentially actors are expected

to capture the behaviour of all separate system components. For example the system

scheduler itself may be an actor, or the processor an actor which executes commands on

behalf of other actors. The only required behaviour of actors is that they communicate

using asynchronous messages sent by address. In practice this means that all other

types of process, thread or fiber can be called actors.

In object-oriented programming everything in the world or system is modelled as

an object. Objects have methods which can be activated to produce some results, for

example a calculator object would have a method for each button on the calculator.

4While the results of a computer program do not become cold as such they may only be useful if
produced within a given time window. Cache must also be kept warm (up to date) to be effective (2.6).
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Subsequent button presses alter the internal state of the calculator object, state which

we can interrogate by perhaps calling a method to read the screen. Objects belong to

one or more classes and the power of object-orientation is that code written to manip-

ulate one object can in principle manipulate all objects of the same class. Real world

objects are inherently concurrent; however, common object-oriented programming sys-

tems such as Java (2.5.17) and C++ (2.5.6) do not provide objects with concurrency. Thus

the notion that I can turn on the kettle object and toaster object together to make my

breakfast can be hard to implement in an object-oriented language.

Another term used in a similar manner as actor to describe concurrent components

is agent. Agent-oriented programming has a very specific definition as a specializa-

tion of object-oriented programming [234]. However in studying Shoham’s definition

of agent-oriented programming it can be seen that it was intended as a realisation of

Hewitt’s Actor model [130]. Despite this the term agent is used broadly due to inter-

disciplinary understanding of the word’s etymology, the Latin agere “to do”. Thus

agent is used to refer to autonomous entities in computer simulations, which are in

essence actors without the inherent semantics of the Actor model.

2.3.1.3 Closures, Coroutines and Continuations

A closure is a function together with the environment it references. The function can

be thought as a recipe which describes how to take a set of ingredients (parameters)

and produce a result. In this case a closure is the function with some of the ingredients

supplied. For example, I buy a loaf of bread with a recipe for making sandwiches which

reads:

1. Cut two slices of bread

2. Insert filling between slices

Since I have the bread (supplied with the recipe) I can replace “bread” with “this loaf

of bread”. This is now a closure for making sandwiches. Now each time I use this

recipe (execute the closure) I add some filling of my choice (supply parameters) and a
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sandwich is produced as a result. The side effect is that the loaf of bread is made smaller

each time I use the recipe.

Closures are an implicit part of functional programming languages such as ML [186],

Scheme [100] and Haskell (2.5.15), but closure like facilities are also present in other

high-level programming languages. Objective-C provides blocks which are for all in-

tents and purposes closures (2.5.20). This is of interest as Objective-C uses closures to

provide concurrency within sequential program code. The programmer can create a

block at any point and then schedule it for execution in response to an event, or place it

on a job queue where it may begin executing concurrently to the program component

which created it. This model can be managed by a scheduler which simply executes

closures on available processors in the order they arrive on the job queue. In fact this is

just cooperative scheduling and the closures are effectively fibers (2.3.1.1) which release

the processor when they finish. Thus the programmer must still address data-oriented

concurrency concerns.

In some contexts functions are referred to as subroutines. This definition originates in

the description of a computer program as a routine or exercise the computer hardware

performs. Historically the first computers would perform only a handful of routine

tasks, such as calculating ordinance trajectories or payroll [106]. To help with structure,

construction and understanding a routine (computer program) was broken down into

or composed from subroutines. A program executes by calling subroutines to do work,

those subroutines might in turn call further subroutines, and so on. Each subroutine

has a distinct start and end, although unlike a pure function there is no implication that

a subroutine takes any input or produces an output. Formally this can be viewed as

the subroutine taking the entire state of the program as its input and producing a new

program state as its output.

Built on the subroutine concept are coroutines [82]. Coroutines are a superset or

generalisation of subroutines. While subroutines have a single start and end, coroutines

can stop by calling (yielding to) other coroutines and when later called again continue

executing at the point where they left off. This is useful where one subroutine consumes
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data produced by another. The producer can call the consumer when data is ready and

the consumer can call the producer when it needs more data. While the coroutines

are not executed concurrently, they are active concurrently with respect to their state.

Again, this is a restricted example of cooperative scheduling.

An important concept for implementing coroutines and similar programming con-

cepts is the continuation [251, 125]. A continuation captures the running state of the

program (or program component). Unlike a closure which can still have parameters

to fill in and has not yet started, a continuation represents a point of execution. If I

am baking cookies to a recipe and have to leave the kitchen to answer the telephone, I

remember where I have reached in the recipe. The point I have remembered is the con-

tinuation. When I come back to the kitchen, I continue where I have left off; however,

the state of the kitchen is not part of the continuation, so someone could have been in

and eaten the chocolate chips while I was out of the room. I could however hide the

chocolate chips before leaving the kitchen, and likewise program components can be

designed to establish similarly “safe” states before creating a continuation.

Closures, coroutines and continuations model concurrency at the programming lan-

guage level whereas processes, threads and fibers express concurrency in terms of units

managed by the operating system or another component such as a language run-time

system. A concurrent programming model is achieved by establishing a relationship

between these components. In the extreme one class of components is made implicit by

abstraction. For example in pure functional programming, processes and threads are

not expressed at all, but simply a feature of implementation. Conversely in an impera-

tive programming language, closures, coroutines and continuations are not expressed,

but rather are implicit features of how the program is prepared for execution.

2.3.1.4 Scheduling and Priority

I have described pre-emptive and cooperative scheduling in relationship to the execution

of concurrent program components. Scheduling is necessary as there are rarely suffi-

cient resources to have all concurrent components executing in parallel, or necessarily a
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need for them to do so. Unless a computer program is designed to function directly on

the target computer system, even the most basic program expecting to run exclusively,

single-tasking, on a given computer system will still need to share processor time and

other resources with the operating system. In this simplest case the program invokes

the operating system to perform tasks and the operating system returns to the program

when finished, a form of cooperative scheduling. Pre-emptive scheduling was born of

two principle concerns:

• the operating system may need to interrupt the running program to handle an

urgent event,

• by dividing processor time between multiple tasks a computer system can be

shared between separate tasks.

The second of these originates in the relative high cost of computer systems, necessi-

tating sharing to maintain utilisation. This was particularly true as computers became

interactive rather than simply job based (where the user would submit jobs to an op-

erator for later execution). Interactive computer usage produces spikes of utilisation

as the computer is fundamentally idle between user commands, thus multiplexing the

system between multiple users is both possible and desirable to avoid wasted processor

time. Such interactive sessions could also be multiplexed with non-interactive and po-

tentially long running jobs. A full discussion of these concerns and their implications

for operating system design can be found in operating system texts such as those by

Tanenbaum [244].

Having established the need for, or otherwise presence of, scheduling, with it we

gain the ability to choose which component runs at a given time. Control is typically

exercised in two ways:

1. when one component finishes or otherwise yields the processor a new component

is selected,

2. the running component could be pre-empted and another component allowed to

run in its place.
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Given sufficient a priori knowledge of the behaviour of (all) components an execution

plan could be computed to meet goals such giving all components equal processor

time. However, the behaviour of components is seldom known in advance particularly

in the presence of unpredictable events such as user input. This means that in practice

heuristics are used to approximate the results of an execution plan. One method used

for the application of these heuristics is priority.

Each concurrent component is assigned a priority by design (static priority), by a

scheduler, or by some combination of both. When selecting the next component to

run, the highest priority component is selected. If a component is created or otherwise

becomes active, perhaps as the result of an external event, and the newly activated com-

ponent has a higher priority than the currently running component, then the currently

running component may be pre-empted. An extensive range of scheduling behaviours

can be implemented by modifying the priority of a component in response to chang-

ing conditions (dynamic priority). For example a long running component could have

its priority reduced so that other components with more short-term needs are serviced

first. I will leave a more detailed discussion of such scheduling heuristics to Chapter 3

where it is most relevant. There are however some related concepts which I elucidate

further here.

If priority is strictly observed and high priority components are always available

to run then lower priority components may never acquire any processor time. This is

called starvation. A heuristic for avoiding starvation is to periodically increase the prior-

ity of components which have not received any processor time so they will eventually

gain sufficient priority to run. The priority must then be reset. This heuristic can have

undesirable consequences if the designer assumed that low priority component would

never run while high priority components are active.

Another unintended circumstance that can occur with priority and shared resources

is priority inversion. During priority inversion a lower priority component is able to ex-

ecute even though a higher priority component is available. Assume three components

H, M and L with respectively high, medium and low priorities. Component L claims
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a shared resource, then due to an external event component H becomes active. H is

of higher priority than L so L is pre-empted. Now if H tries to claim the shared re-

source, but must wait because it is held by L. H yields so that L becomes active again.

Now if M becomes active either by external event or as created by L then L will be

pre-empted. Assuming M does not interact with the shared resource, M has achieved

priority higher than H. If M starves L, then H will also starve. This example highlights

the impact shared resources can have and their performance implications with respect

to Amdahl’s law [30].

Amdahl’s law is a model postulated by Gene Amdahl to describe the relationship

of the parallel speedup of an algorithm in relation to its sequential version [30]. It re-

lates speedup to the proportions of the algorithm which are sequential and parallel.

Expressed simply, an algorithm can never go faster than its slowest sequential compo-

nent. The sequential portions of an algorithm place an upper bound on the speedup

that can be achieve regardless of the available parallel computational resources. This

can also be applied to hardware resources such as a single shared memory, which is a

single sequential component.

It is important to note that the Actor model and most process calculi such as pi-

calculus and the join-calculus do not consider priority with respect to concurrent com-

ponents. This is not to say that priority is precluded, but rather that there is no inherent

mechanism for expressing it and hence reasoning about its impact on a component’s

behaviour. Much work has been done on extending process calculi with notions of

time and priority, where the former is often required for the latter [72, 107, 87, 226, 188].

The comparatively weak semantic guarantees of the Actor model are unaffected by the

presence or absence of priority. In practice most programming languages that support

concurrency based on or inspired by the Actor model and process calculi do provide

a means of implementing priority either globally on concurrent components or locally

through choice over concurrent events (see 2.3.3). As such language features are en-

gineered in lieu of mathematical models, mathematical expression of these could be

considered post hoc capture of existing behaviours [225, 65].
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2.3.1.5 Performance

It is important to mention the performance implications of the primitives so far out-

lined. Essentially each of the primitives has an associated overhead in memory space

and processor time. These overheads can be quantified as context size and time com-

plexity of a context switch.

In a scheduled environment where concurrent components share processor cores, a

context switch is the passing of control of a processor from one concurrent component

to another. When a context switch occurs, the context (running state) of one compo-

nent must be stored (implicitly or explicitly creating a continuation), then the context

of the new component must be restored. For operating system managed components

such as processes and threads the context switch overhead is often significantly higher

than language based constructs such as as fibers, actors, coroutines and continuations.

This is due to a number of hardware related concerns the operating system must man-

age. For example each operating system managed process has its own map of system

memory in the form of page tables. These tables isolate processes from each other and

provide protection so that one process cannot overwrite memory used by another. At a

context switch the operating system must acquire privileges (managed by the computer

hardware) to change these tables, then look up and adjust various hardware settings,

and finally synchronise the hardware with the new intended memory map. These steps

can take upward of 3000ns on present commodity hardware, whereas context switches

between concurrent components managed by a programming language runtime may

only be 30ns.

The operating system related context switch overhead is high as operating system

induced context switches are not typically cooperative. This means the state of the com-

ponent cannot be assumed and all state must be preserved. Context switches induced

by language constructs such as fibers, actors, closures, coroutines and continuations are

cooperative, the running component is aware of the switch and thus only required state

need be stored. This effect can be further enhanced when the programming language
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manages state with a priori knowledge of when context switches may occur. At the sim-

plest level a subroutine call could be considered a context switch where in the design of

the programming language the state preserved by the call is agreed in advanced. If the

caller uses state which it knows not to be preserved by the calling agreement it can save

this prior to the call; going further it can be optimised not to use state not preserved

by the call inherently reducing the context switch overhead. Conversely if a subroutine

does not call any other subroutines it can be optimised to use state that is not preserved.

To give an example of the above cooperative context switching, consider a kitchen

shared by two chefs. There is only one chef using the kitchen at a time and when one

chef leaves they always cleaned and tidied away the utensils to the same places. This

means the next chef does not need to search for or clean the utensils next time they enter

the kitchen. Both chefs work to maintain the agreed state, saving both time and effort

later on. The operating system manages which chef is using the kitchen at a given

time, but does not need to do anything in the kitchen itself. This analogy is faithful

to real world scenarios. However, applying pre-emptive scheduling to the kitchen is

somewhat unrealistic. With the pre-emptively scheduled kitchen the operating system

can come into the kitchen at any point and render the chef unconscious by hypnosis or

some other means. The chef is then taken out of the kitchen and the operating system

carefully records the position and state of all the utensils. If some of them are dirty

then those must be kept and swapped for clean ones. When a new chef starts work

the kitchen is in a clean known state, but whenever a previously pre-empted chef is

returned to the kitchen all of the utensils must be replaced exactly as recorded so that

no difference is observed.

The above example highlights the inherent cost of a “heavy-weight” pre-emptive

approach. However, the cost can be significantly reduced by adopting a partially co-

operative approach. This can be achieved by only allowing pre-emption at defined safe

points. Such an approach can supported by dedicated hardware such as in the INMOS

Transputer processor [138, 189]. I will discuss this further in Chapter 3.
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2.3.2 Communication and Synchronisation

Communication is the passing of data or other program state between concurrent com-

ponents. For the purposes of hierarchy I consider synchronisation to be a form of com-

munication. Synchronisation allows reasoning about the state of two or more concur-

rent components. For example, if two processes synchronise we know they have both

reached a given point in their execution.

2.3.2.1 Semaphores and Monitors

One of the earliest proposed and implemented forms of synchronisation between con-

current components is Dijkstra’s semaphore [91, 94].

A semaphore contains a count and provides two operations for modifying it:

P (called wait) decrements the count,

V (called signal) increments the count.

Critically these operations are atomic: their inner workings are indivisible such that no

interleaving of operations can damage or corrupt the count. Synchronisation is estab-

lished by maintaining an invariant on the count, which maintains that the count may

not become negative. Hence if a P operation would reduce the count below zero it waits

until signalled by a V operation. In such a scenario the V operation effectively cancels

the P operation.

Semaphores can be used to manage the sharing of a resource by allowing only as

many concurrent users of the resource as the initial count of the semaphore. When

program component wants to use the resource it decrements the count, if there are no

available resources the count will be zero and the user will have to wait for one of

the existing users to release the resource and increment the count. Semaphores can also

provide mutual exclusion between concurrent components. A lock can be created using

a binary semaphore, a semaphore which has an initial count of one. The lock is taken

with a P operation and released with a V operation.
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A later but related concept is that of Brinch-Hansen and Hoare’s monitor [119, 133,

120]. Monitors provide mutual exclusion, but at a higher semantic level than semaphores.

While semaphores exist separate from the resource they protect, monitors are implicitly

embedded within the resource. A monitor encapsulates data and a set of operations on

that data. This is comparable to the concept of an object in the object-oriented style of

programming. The monitor ensures mutual exclusion of operations within the monitor.

If a program component initiates an operation, any overlapping operations initiated by

concurrent components are made to wait until the first completes.

There are times when concurrent operations are required. In particular it may not

be possible for an operation to complete until some condition is satisfied by the opera-

tions of other concurrent components. Imagine a kitchen controlled by a monitor who

manages operations using the kitchen. I initiate the operation of making custard, but

there is insufficient milk. Milk is delivered regularly to the kitchen, but because I am

using the kitchen a delivery cannot be made. I do not want to cancel the operation of

making custard as I’ve done most of the preparation already, instead I tell the monitor

I want to wait on the milk available condition and go to sleep in the corner of the kitchen.

In the mean time others can come and go using the kitchen, including the milkman who

can deliver milk. On delivering milk, the milkman signals the milk available condition

and the monitor wakes me up.

An important observation is that semaphores and monitors mirror each other’s

functionality and in a sense are duals of each other. A monitor can be used to im-

plement a semaphore with relative ease. The count of the semaphore is held in the

monitor along with the mutually exclusive P and V operations along with a condition

for greater than zero. The P operation checks the semaphore count and waits on the

greater than zero condition if the count is zero. The V operation increments the count

and signals the greater than zero condition. Conversely a monitor can be implemented

using semaphores, but care is required. A binary semaphore can provide the monitor’s

mutual exclusion of operations. Separate semaphores can be used to implement each

condition, these semaphores have an initial count of zero, and P operations used to
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wait for the condition and V operations to signal the condition. Care must be taken

that conditions signalled when there are no waiting components do not increment the

semaphore, otherwise the semaphore will not cause future components to wait and

cease to serve its purpose. Additionally this design does not maintain the strict seman-

tics outlined in Hoare’s original design [133].

There is a divergence in monitor behaviour when there are multiple components

waiting for the same condition. Hoare’s initial design specifies that exactly one of those

waiting should be woken up and be given preferential access to the monitor, for exam-

ple in the above example once I have been woken up by the monitor and the milkman

has left the kitchen I am guaranteed to be the next to use the kitchen thus ensuring that

I get to use the milk and finish making my custard. From an implementation perspec-

tive this implies that there is a queue of components waiting to perform operations,

queues of components for each condition and that it is possible to insert items at the be-

ginning of the operations queue so as to guarantee priority for signalled components.

The last of these implications is difficult to achieve if a monitor is implemented using

semaphores. This is because there is no way to pre-empt the queue of components

waiting on a semaphore. Various solutions to this problem have been proposed and

implemented [244], most of which involve using multiple semaphores to separate op-

erations woken up by conditions from operations waiting on the monitor itself.

An alternative to increased implementation complexity is to relax Hoare’s constraints

and place components woken by condition satisfaction on the same queue as compo-

nents waiting to perform operations. In the previously outlined semaphore implemen-

tation this means that having woken from a condition semaphore the component at-

tempts to take the operation binary semaphore again, competing with other compo-

nents attempting operations. Applying this to the kitchen example, instead of sleeping

in the corner of the kitchen, I wait outside the kitchen and when told the condition is

satisfied I try the door again, queuing with others waiting for the kitchen. The implica-

tion is that despite being told there is milk, three people could have made hot chocolate

with it and used it all up by the time I get in to the kitchen again. This means that
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I must retest the condition and could wait many times (perhaps forever) for it to be

satisfied [262].

A further simplification applied to monitor implementations is to only have a single

queue on top of which all other conditions are mapped. When a component needs to

wait on a condition it waits on the shared queue. If there is only one possible condition

then a single component can be woken from the queue, but if there are multiple possible

conditions then all waiting components must be woken. Each component then takes its

turn operating on the monitor and testing whether its condition has been satisfied, after

which it might finish operating on the monitor if its condition has been satisfied or wait

again if not. While this implementation saves memory space and processor time as

only one queue need be stored and maintained, it has significant inefficiencies. As the

number of conditions or waiting components increases, the time taken to signal them

all, and for all of them to be scheduled and test their conditions is increased. While

overall time is increased, the amount of time spent doing meaningful work, by the

component which has satisfied its conditions, remains constant. This is compounded

by the fact that components operating on the monitor simply to test their conditions are

excluding other components without any conditions from using the monitor.

Despite the performance implications, simplified monitor implementations are pro-

vided in many common programming languages, such as Java (2.5.17) and C# (2.5.5).

Simplified monitors are appropriate when there is only one condition and it could be ar-

gued that in the structured style of programming that typifies these languages that only

one condition should be present in any given monitor. Where multiple conditions are

required there will need to be multiple monitors. This does however reduce the seman-

tic benefits of monitors over semaphores. Essentially while semaphores and monitors

provide the same functionality (mutual exclusion), when implemented as part of a pro-

gramming language such as Concurrent Pascal [120] monitors provide a tight coupling

of this functionality to the operations and data it protected, whereas semaphores are

separated from the data protected.
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When programming, at least imperatively, it is not unreasonable for the program-

mer to imagine themselves performing the actions of the program. Essentially the pro-

grammer role plays the scenario from the point of view of the computer and writes

down a list of the actions they would take, with a level of generalisation. Applying

this principle to the previous kitchen examples, I as the programmer am a chef who

uses the kitchen. If the kitchen is protected by a semaphore then there is no door to the

kitchen, but an indicator next to it showing whether it is available or not. When I go

into the kitchen I check and update the indicator, or wait until the kitchen is available.

When I leave the kitchen I also update the indicator. I can however forget to consult or

update the indicator and wander into the kitchen while it is in use, or leave it without

indicating it is now available. Both of these scenarios have significant implications as I

am not expecting to coordinate my actions with any other concurrent users. As there is

no door I can also peer into the kitchen and look at what is going on. If the kitchen is

protected by a monitor then there is a door which automatically locks from the inside

when someone is in the kitchen. When I want to use the kitchen I have to pass through

the door; I cannot avoid it. If the door is locked I have to wait; I also cannot see inside5.

Since the lock is automatic I cannot forget to lock the door when I enter, and I have to

unlock it to get out again.

In conclusion semaphores and monitors provide synchronisation and mutual exclu-

sion. Monitors are strongly coupled with the data or resources they protect and thus can

reduce programmer errors compared to semaphores. When used for mutual exclusion

both semaphores and monitors have the same performance implications with respect

to Amdahl’s law [30]. As locking primitives both also increase program complexity as

per data-oriented concurrency (2.2.1).

5Except by pointer aliasing which occurs in many programming languages.
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2.3.2.2 Barriers

A barrier provides synchronisation between multiple concurrent components. Barriers

divide computation into phases. At the end of each phase each concurrent component

synchronises on the barrier, this synchronisation does not complete until all other com-

ponents are also synchronising on the barrier. This is similar to a multi-stage bicycle

race, with phases representing stages, each stage with a finish line. The cyclists finish

a stage at different times; however, all the cyclists start the next stage together. As op-

posed to mutual exclusion, such as in monitors (2.3.2.1), where components are essen-

tially prevented from executing in the same phase, barriers guarantee that any number

of components are all executing in the same phase.

A common use of barriers is to synchronise large numbers of components generat-

ing results from shared data. An example of this is n-body simulation. Each concurrent

component is responsible for calculating the position of a number of bodies. The bod-

ies interact by exerting forces on one another, for example if the bodies are subatomic

particles they might attract each other via gravity and repel each other by electromag-

netic fields. Each component reads the shared data to discern the influence other bodies

have on the bodies it governs then synchronises on a barrier. After completing the bar-

rier the components apply the influences previously calculated before synchronising on

the barrier again. This divides computation into two phases, a read phase and a write

phase. In the read phase the components can access any shared data in the knowledge

that it will not change. In the write phase the components only update shared data they

are responsible for in the knowledge that the changes will not collide or interfere. All

components advance at the same time in lock-step.

The above design pattern can support any number of phases of computation as

long as all components are in the same phase; however, to support this, barriers must

be carefully designed to separate incoming and outgoing components. It is possible to

imagine a scenario where a barrier synchronisation finishes and one component races

out of the barrier, finishes its work and returns to synchronise on the barrier before

all other components have left. Additionally while one barrier can support multiple
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Figure 4: Example of barrier synchronisation. Components arriving at the barrier are
blocked. When the last components arrives all components are rescheduled.

phases, it does not allow the identification of the current phase of components, for

example if a new component wishes to join the computation part way through. Hence

it is often preferable to use a separate barrier for each phase.

Specialisations of barriers such as clocks have been proposed to strongly bind barri-

ers with phases [70, 233], much as monitors strongly bind operations in comparison to

semaphores. Clocks have distinct phases and can only advance to the next phase when

all components are waiting (synchronise) for the clock to advance. It is also possible to

observe the current phase of a clock.

It is important to observe that there are two types of barrier:

• static barriers where the number of components synchronising does not change;

• dynamic barriers where components may join or leave the barrier at any time.

Static barriers are relatively simple to manage as a count of waiting or active compo-

nents. The hazard is that if a component fails, even if failure is detected, the static

barrier can never complete. Thus dynamic barriers are desirable for handling failure,

but also to allow components to be added during use.

With a dynamic barrier components may resign at any point. Care must be taken

in the case that resignation would cause the barrier to complete. When a component

wishes to use the barrier it must enroll on it. Coupled with this the component will need
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to observe the present phase of the barrier, perhaps using shared data, and potentially

synchronise multiple times until the phase is appropriate for the component to begin

computation.

Barrier variants exist at all levels of computer software and hardware. At the micro

level barrier instructions exist in computer processors to synchronise state with respect

to memory in multi-processor systems [143]. At the macro level barriers can be imple-

mented across computer networks and tens of thousands of processors [121]. As with

other concurrency primitives, if barriers are used heavily they represent a significant

potential overhead. Critically barriers serialise all concurrent components involved at

the rate of the slowest. If one component runs significantly slower than the rest, they

will spent significant periods of time waiting for the slowest. Essentially the slowest

component increases the sequential portion of the computation in Amdahl’s law. This

limits the suitability of barriers to cases where all components have similar execution

times or waiting does not introduce inefficiency. The first case is common when work

has been evenly divided among a number of components. The second case applies

when there are significantly more concurrent components than physical processors,

meaning there is always more work to occupy the time spent waiting for the slowest

component.

Partial barriers have been proposed to avoid delays from slow or failed compo-

nents [27]. With a partial barrier not all components enrolled on the barrier need to

reach the barrier in order to complete the barrier synchronisation. This is appropriate

when having components in different phases of computation does not endanger the

safe operation of the program; a scenario common in distributed systems where data

is operated on locally. Components arriving late to the barrier will need to be treated

specially, adding complexity. Alternatively, if the barriers are part of a choice construct

(2.3.3), then a partial barrier need only admit the appropriate number of components

to the given choice [260].
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2.3.2.3 Interrupts, Signals and Events

A concept originating in computer hardware, an interrupt is a signal from outside the

computer processor which causes a change in the flow of execution inside the proces-

sor. Interrupts exist primarily to simplify the implementation of programs for manag-

ing computer hardware such as operating systems. When a piece of hardware needs

attention it can send an interrupt, in the form of an electrical signal, to the processor.

For example a network interface might interrupt the processor when a new message

has been received from the network.

In the absence of interrupts program code must check the state of hardware at regu-

lar intervals, a technique called polling. Polling is inherently inefficient, as every time a

device is polled and does not require attention, the time spent polling is not spent doing

meaningful work. Thus if the polling frequency is too high the time spent polling will

eclipse the time spent doing useful computation. Conversely if the polling frequency is

too low, events which are timing critical may not be dealt with fast enough and errors

may occur as a result. This can be likened to putting a kettle on a gas stove and getting

on with other tasks in the kitchen. If I do not check the kettle frequently enough it will

reach boiling point and eventually boil dry, perhaps damaging the kettle. However if

I check it too frequently I will not be able to do anything else in parallel to waiting for

the kettle to boil, as essentially I will just be waiting for the kettle, and worse the kettle

may never come to the boil [179]. The commonly adopted solution is to place a whistle

on the kettle so it notifies or interrupts us when it reaches the boil.

Viewed in a simplified form, the programmer defines a subroutine to be activated

on receipt of an interrupt, an interrupt handler. The interrupt pre-empts any program

code and hence the interrupt handler must save the present state of the processor before

performing any work. On completion the interrupt handler clears the interrupt state

in the processor to indicate the interrupt has been dealt with, and it may also need to

manipulate the device such that it is no longer causing the interrupt before doing this,
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Figure 5: Example of interrupt handling. The execution of the interrupt code is inter-
leaved with the execution of program code.

otherwise the interrupt may trigger again immediately. The interrupt handler then re-

stores the pre-empted program code and execution of continues. The pre-emptive na-

ture of interrupts makes them one of the earliest forms of concurrency as the interrupt

is concurrent with program code.

As the execution of the interrupt is arbitrarily interleaved with other program code

data-oriented concurrency issues can arise. However, it is not practical for the inter-

rupt handler to synchronise with other concurrent components as they themselves have

been pre-empted by the interrupt. To elucidate this, imagine one component takes a

lock and begins manipulating data protected by that lock, an interrupt occurs and the

interrupt handler wants to manipulate the same data. The interrupt handler can never

acquire the lock on the data without restoring the previous component, an operation

that is non-trivial or impossible as the interrupt itself has bypassed any scheduling in

the running program or computer’s operating system. A common solution is to pre-

vent interrupts during so called critial sections. This is done by disabling interrupts and

denying concurrency. Thus if the programmer wishes to manipulate data which may

also be manipulated from an interrupt handler, the interrupt is first disabled and then

re-enabled on completion. Even with this mechanism, in a multi-processor system the

interrupt may be delivered and handled by another processor.

An alternate solution is to raise the interrupt handler from being a low-level op-

eration to a higher-level concurrent component managed and scheduled with other
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components in the system. This can be done using the interrupt handler to activate a

concurrent component which performs the rest of the work. A split is often necessary

as certain actions may need to be taken in the interrupt handler, such as handshaking

with hardware while interrupts are disabled, before continuing. Within the Linux ker-

nel these two stages are called top-half and bottom-half. This approach is used in the

RMoX operating system to convert hardware interrupts to a message-passing paradigm

and remove data-oriented concurrency concerns [49].

The principle of interrupts has been extended to software events within operating

systems. An operating system process (2.3.1) can receive a signal from the operating

system or another process [18, 216, 245]. On arrival the signal interrupts the destination

process’s current execution and invokes a signal handler which is synonymous with an

interrupt handler. This mechanism allows for fault handling, for example when a pro-

gram attempts to access otherwise inaccessible memory the operating system sends a

signal. The default behaviour on receipt of this signal is for the application to terminate;

however, a signal handler could be implemented to attempt recovery. While primarily

designed for fault handling, as signals can be sent between processes they also provide

a form of inter-process communication.

All the same limitations and data-oriented considerations as interrupts exist with

this mechanism with the additional consideration that while interrupts are typically

synchronised with hardware devices, signals are asynchronous. I have mentioned con-

siderations for asynchronous behaviour with respect to messages in 2.2.2 and will reit-

erate these in 2.3.2.4. A particular risk with signals is that while messages are generally

explicitly received so they do not add concurrency to an existing program, signals pre-

empt program execution and create unexpected or undesired concurrency that must be

managed. Signals can in some systems even pre-empt signals, meaning the operation

of signal handlers themselves can be interleaved. Imagine I am in the kitchen working

through a recipe (written on a piece of paper) when suddenly a new recipe (the signal)

is placed on top of the current one and I am told to make the new recipe and I cannot

return to the old recipe until its done. If yet another signal comes in, I have to start that
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Figure 6: Example of event processing. Incoming events are held in a queue from which
they are dispatched.

as well. While I am not preparing these recipes in parallel, they are all concurrently

active. Each of these recipes takes more pans and utensils of which there is only a fi-

nite number. Also if I happened to be on timing critical step of the first recipe, such as

baking cookies in the oven, it might fail if I do not finish the new recipes quick enough,

resulting in burnt cookies. This contrived example is an accurate analogy of interrupts

and signals.

The concept of an event as mentioned in relation to event-driven programming

(2.2.3) is synonymous with an interrupt or signal. However, idiomatically events are

not pre-emptive. Conceptually the acts of receiving the event and invoking the code to

handle the event are separated by a queue. New events are added to the back of the

queue, with a scheduler executing the queued events in some order. If the scheduler

does not invoke event handlers concurrently then there is no concurrency. While con-

currency related hazards are avoided by this method, event handlers must be designed

to finish quickly so that new events can be processed in good time. This highlights

the advantage concurrency (and pre-emption) can have in maintaining response times

while removing concerns from the programmer. The programmer should be able to

write a long running computation in one component without having to consider the

implications for the response time of other components: this is not possible without

concurrency.
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In summary, interrupts, signals and to a lesser extent events all introduce concur-

rency into computer programs. While interrupts may synchronise with hardware this

is not a requirement of their functionality, thus they do not inherently provide any syn-

chronisation. Similarly, as the majority of implementations of signals are asynchronous

with respect to the sender [18], these do not provide synchronisation either. Interrupts

and signals also carry very limited information about their source. Combined with their

asynchronous nature, receiving an interrupt or signal is similar to receiving a postcard

with the sender’s address written on it and the message “call me”. The sender does not

know when or if they will get a call back and the receiver doesn’t know much more

than the fact that someone wants their attention. Events, as applied to event-driven

programming, can carry data, e.g. “mouse click at coordinates 1,1”. This gives events

parity with asynchronous messages (2.3.2.4) where the destination is the whole pro-

gram as a proxy for the event scheduler, which in turn initiates a handler, perhaps as a

concurrent component. Critically, interrupts and signals target an entire program (not

program component), which must handle them concurrent to any existing operations.

2.3.2.4 Messages, Mailboxes and Channels

A broad concept encompassing many forms of communication is that of messages. A

message carries data and potentially provides synchronisation. Messages underpin the

message-passing paradigm of concurrent programming as described in 2.2.2.

Messages can be categorised by how they are transmitted, received and the medium

on which they are carried. Essentially the choice of abstraction chosen for the transmis-

sion medium determines the semantics of transmission and reception. In the actor model

messages are sent via an ether with no defined properties [25]. Messages are given an

explicit destination, which the sender must know before it is able to send the message.

Being undefined the ether offers us no guarantees about when or if the message will

arrive at its destination, how long it will take or how the message will be ordered with

respect to other messages. It is also unspecified as to whether the ether has a storage

capacity, i.e. multiple messages can be in moving through the ether at once, or only one
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Figure 7: Example of messages in Actor model. Messages travel between actors via the
ether.

message can be in the ether at a given time. In the latter case, if the destination is busy

when a message arrives the message could be lost, an asynchronous ether. Alternatively,

the ether might remain full and unusable until the destination is ready, a synchronous

ether. This would have the knock-on effect of preventing any other messages being sent

until the destination is ready.

Mailboxes

As described the actor model ether provides the strongest definition of asynchronous,

and offers the least guarantees. All other transmission models can be seen as refine-

ments of the ether to add guarantees. Most actor model implementations give each

destination or concurrent component a mailbox into which new messages are delivered.

These mailboxes are typically unbounded in size, preventing message loss if the desti-

nation is not ready and the ether is asynchronous, or a full ether if synchronous. It is im-

portant to note that a synchronous ether requires less engineering and is hence common

where concurrent components are implemented as coroutines or continuations (for ex-

ample Smalltalk [238]). Thus the need to mitigate the limitations of a synchronous ether

and a genuine concern.

While mailboxes may be unbounded in size, all computer systems possess limited

memory and storage capacity. Rather than allowing all memory in the system to be
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consumed by mailbox storage, an upper bound on mailbox size could be defined. If

the mailbox is full then it discards newly arriving messages, which could be useful if

a runaway component sends out messages endlessly. This could turn a synchronous

ether into an asynchronous ether as required. It is an important distinction that the

mailbox discards messages not the ether, as this allows the semantics of the discard to be

defined. For example the oldest messages in the mailbox could be discarded, meaning

the mailbox only contains the most recent messages. Additionally as a mailbox is a

store of messages, the component could choose to look through all messages to pick

which one to deal with first. This is a form of choice which is covered in more detail

in 2.3.3. Essentially mailboxes refine the ether and provide defined behaviour to actor

model systems.

Mailboxes separate components from message reception. Components wait for

messages by waiting on the mailbox and when not waiting the mailbox prevents in-

coming messages from interrupting the component (2.3.2.3) or losing messages. With

this separation the destination of a message becomes a mailbox rather than a compo-

nent. Thus it is conceptually feasible that a component could have multiple mailboxes.

Within the actor model formalism itself mailboxes are in fact actors themselves dele-

gated with handling messages for another actor [130].

Channels

Thus far messages are created, given an explicit destination, and sent into an ether

from which they later emerge at their destination. In principle all components have

equal standing within the ether and any component can message any other. Removing

the ether removes the communication medium and all components are isolated. In the

absence of an ether, explicit communication channels must established between compo-

nents that wish to communicate. With channels the destination is implicit, messages

sent in to one channel end emerge at the other channel end.

Like mailboxes, channels provide defined behaviour. Where the ether is strongly

asynchronous and is refined by mailboxes to provide guarantees, channels can be seen
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Figure 8: Example of messages with channels. Messages travel between processes over
channels.

as strongly synchronous and have their guarantees relaxed to increase functionality.

Thus the simplest form of channel is one which possesses no buffering. When a sender

attempts to send a message it can only do so if there is a receiver at the other end, if

not it must wait. The opposite is also true, since the channel cannot contain a message,

the receiver can only receive a message if there is a sender. This provides the strong

guarantee that having completed a communication, both the sender and receiver know

each other have passed a certain point, and the location of the message. This an implicit

barrier (2.3.2.2) between the sender and receiver.

Naı̈vely synchronisation can be implemented using asynchronous messages by ac-

knowledgements or handshaking:

• the sender sends the message, then waits for an acknowledgement from the re-

ceiver;

• the receiver on receipt of the messsage sends an acknowledgement to the sender.

However this does not provide the same level of synchronisation as the sender is not

aware the message has been delivered until the acknowledgement arrives. As long as

the delivery of the acknowledgement is guaranteed this relaxation of synchronisation

does not represent an issue, as the observed behaviour of both components having

reached a known point is still preserved. Significantly this is based on a consistent
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ordering of the events as observed by the two communicating parties, an assumption

that is not true in an actor model system.

Imagine a system of three concurrent components:

• S, the sender, sends a message M1 to R, then waits for an acknowledgement A1.

• R, the receiver, receives message M1 then sends an acknowledgement A1 to S,

then sends another message M2 to T the third party.

• T, the third party, receives a message M2 and sends it onto S.

In this system the expected behaviour is that S sends M1 to R, which acknowledges it

with A1. After sending the acknowledgement, R sends M2 to T, which sends it to S.

We might expect the S to observe the sequence: A1, M2; however S can also observe

M2 followed by A1 as messages can be reordered in the ether. In fact this scenario

is possible even without the third party if the ether does not respect the ordering of

communications between communicating components, something it has no obligation

to do, although a guarantee is present in some models (Akka for example 2.5.26.1). The

messages sent from R, A1 and M2, can race in the ether with M2 arriving before A1.

The solution to the above scenario is to design S so that it does not process any

messages until the acknowledgement is received; it must buffer all messages until the

acknowledgement arrives. Thus S may have to buffer a potentially unlimited num-

ber of messages while waiting for the acknowledgement. This behaviour cannot occur

with unbuffered synchronous channels as the act of sending the message and receiv-

ing the acknowledgement are indivisible. To generalise, with unbuffered synchronous

channels there can only be n
2 messages in transit, where n is the number of concurrent

components. With asynchronous messaging as per the actor model there is no upper

bound on the number of messages in transit or buffered in mailboxes. While with asyn-

chronous messaging it is conceivable that messages could be lost when the system runs

out of memory, it is not known how much memory is required for the running sys-

tem. This contrasts with synchronous messaging over channels where the amount of

memory required for the system can be known a priori.
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The strong guarantees of channels can be relaxed by making them buffered and

hence asynchronous. This buffering could be bounded, such that when the buffer is

full the channel degrades to synchronous behaviour or lossy in the same manner pre-

viously described for mailboxes. Critically the order of messages within the channel is

preserved unless a buffering implementation which reorders messages is chosen. This

buffering can be implemented by introducing a concurrent component using two syn-

chronous channels, one to communicate with it, the other to receive from it [228].

As previously discussed, channels have an implicit destination for messages they

carry and in the absence of channels an explicit destination embedded in each message

must be used. Both of these scenarios must overcome the issue of discoverability, i.e.

how does one component know the address of another. Discoverability can be achieved

in a number of ways:

1. a priori knowledge written into the program, e.g. the address of a given compo-

nent is a constant embedded during construction;

2. a directory supported by a priori knowledge of its location, e.g. I can ask the

directory for the address of a component (by-name);

3. hierarchical knowledge, e.g. a parent can pass knowledge to its children when

they are created;

4. communication, e.g. one component shares its address with others.

Without channels the communication of addresses simply means sending the location

of the mailbox of a component. The address of one component is written into a message

and sent to another component. With channels the ends of the channel can be commu-

nicated independently; this means one component can create a channel and pass both

ends of it to other processes. The word pass is used to describe communication of chan-

nel ends, whereas copy is more common for mailbox or actor addresses. This signifies

that the end is a entity which if duplicated would become two separate entities, whereas

all copies of an address are equal.
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When considered as entities, channel ends can be seen to be owned by components.

This leads to a distinction between shared and unshared channel ends. An unshared

channel end can only be used by the component which owns it. A channel with only

unshared ends provides exclusive communication between components. Conceptu-

ally the sharing of channel ends is simpler if channels are unidirectional with sending

and receiving ends. Sharing the sending end allows an interleaving of messages from

senders to receiver, as many people can send letters to a single company. Sharing the

receiving end scatters delivery of message across a set of receivers, as a company may

employ many people to open and sort letters. An actor model system with mailboxes

can be modelled as system in which each component has a channel, where the sending

end is shared with all other components. A component messages another using the

appropriate sending end and receives messages using its unshared receiving end.

Summary

In summary messages carry data between components and can provide synchronisa-

tion. Explicitly addressed asynchronous messages based on actor model semantics are

present in many programming languages, notably Erlang (2.5.11), Scala (2.5.26), and

Clojure (2.5.9). Smalltalk, a significant influence on the actor model itself, provides ad-

dressed synchronous messaging (2.5.27). Channels with both synchronous and asyn-

chronous behaviour are present in other languages, notably occam (2.5.21), Google Go

(2.5.13), and XMOS XC (2.5.30). Unbuffered primitives such as channels carrying mes-

sages can be used for synchronisation, although handshaking (with weaker guarantees)

can simulate this with asynchronous messages. Critically there is duality between pro-

grams constructed using monitors (or semaphores) and programs constructed using

messages [159]. However it is important to select the approach which most accurately

expresses the model (2.1.1).



CHAPTER 2. CONCURRENCY 65

2.3.2.5 Promises and Futures

A future is a value which is not yet ready (finished computing), but will be at some

point in the future [44]. A promise is the same as a future, although the name may

suggest more strongly that the value will be computed [227]. This is important because

futures are heavily associated with lazy evaluation.

Lazy evaluation describes the concept that given an expression such as y = x + 42,

I only need compute y if it is actually used. This applies through dependency, so if I

define z = y− 1, but never use z, then I need not compute y or z. In a pure functional

language, such as Haskell (2.5.15), where computation does not have side-effects then

all computation can be lazy as the order in which steps are taken does not effect the

result. This is like executing a recipe backwards and whenever a item is mentioned that

is missing, I read further back to find how to make it. For example (sponge cake):

1. After 25 minutes take cake out of oven. I need a cake.

2. Place cake mixture into tin, then place cake into oven for 25 minutes. I need a tin

and cake mixture.

3. Combine flour with egg mixture to make cake mixture. I need flour and egg mixture.

4. Beat egg into creamed butter to make egg mixture. I need egg and creamed butter.

5. Cream butter and sugar to make creamed butter. I need butter and sugar.

At the point a promised value is needed the future must be resolved. This means

either the value must be computed (lazy future), or it must be waited for. This action can

be explicitly requested or implicit in use of the future. In lazy evaluation the creation

and resolution of futures, called thunks, is implicit and is a kind of closure (2.3.1.3). A

wait may occur if the future is being computed concurrently. Concurrency is possible

because the computation of a future can begin at the moment it is created (a concurrent

future). If computation completes before the value is required then no wait is induced,

otherwise the resolving component synchronises with the computation. Assuming the

computation has no side-effects the result of both these scenarios is the same.
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Figure 9: Example of futures and resolution. A component creates a closure which
becomes the future, at this point the future can be active concurrent to the component.
Later the component resolves the future which blocks the component until the future is
computed and produces a value.

Promises can be pipelined to improve performance [163]. If operations on futures

are themselves futures the new future can be passed to further steps without delay-

ing computation. This can be imagined to be a sort of reverse pass the parcel, at each

step the parcel is wrapped again together with instructions of what to do with its con-

tents (like a closure). Conceptually the parcel then unwraps itself from the inside as its

components become ready. The parcel can continue to be passed around and more op-

erations added. Eventually this magic parcel will turn into the finished result wherever

in the system it ends up.

For performance reasons it may also be useful to test a future to see if it is ready

without resolving its value. This technique is often called a read-only view, because it

does not change or write the state of the future. If a read-only view is not available

then any attempt to observe the value of a future will force resolution of its value. This

relates to choice (2.3.3), as it allows alternate actions to be taken if a future is not ready.

Resolution may itself be synchronous or asynchronous. Synchronous resolution is

as previously described, the observer has to wait for the value or perform the com-

putation. In asynchronous resolution a message (or other signal) it sent to the future

requesting the value, and when the value is ready it is sent back. During the intervening

period the observer can perform other tasks.
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A concurrent future can be seen as a special case of a channel which only ever carries

one result. The computation component holds the sending end of the channel and

sends the result when computed. The observer holds the receiving end from which is

reads from when the future needs to be resolved. If the result is ready then it will be

received, if not the observer will wait until it is. A read-only view can be implemented

if the channel can be tested without waiting.

2.3.3 Choice

The if statement or similar is present in every Turing complete programming language.

This tests a boolean (true or false) expression, and takes one action if it is true or another

if it is false. For example, if the cookies are golden brown, then take them out of the

oven, else wait a few more minutes. An if statement branches the state of the program.

Notionally there are three states: P the state prior to testing, T the state if the condition

is true and F the state if the condition is false. This can be seen in figure 10.

P T

F

true

false

Figure 10: An if statement branches state into true and false states.

By testing multiple conditions in turn a selection can be made between any num-

ber of states. This is a low-level mechanical view of the high-level concept of choice.

Figure 11 compares multiple if branches to a single choice of a number of possibilities.

While the number of resulting states is the same, the multiple test and branch opera-

tions lack atomicity, which is to say the operation is observably divisible into multiple
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operations. As there are multiple operations a sequence between these tests is created.

In the absence of concurrency this sequence does not affect the result; however, in a

concurrent system the state of other components can change between sequence steps.

Imagine I ask a question of three people, with fairly boring names like A, B and C. I

want to take the answer of the first who is ready to answer. First I look at A and they are

not ready, so next I look at B who is not ready, then I look at C who is ready, so I take C’s

answer. It is possible for A to become ready then C to become ready while I am looking

at B, so while I pick C in fact A was first. Whether this difference in behaviour is sig-

nificant to correctness varies, however the critical observation is the desired behaviour

must be captured by a high-level concept such as choice rather than simple branching.

P T1

F1 T2

F2 T3

F3

P T1

T2

T3

T4

Figure 11: Multiple if branches are equivalent to a single choice with respect to end
states, but if statements lack atomicity.

2.3.3.1 Determinism

A program is deterministic if it is possible to determine the output of the program solely

from its input (and knowledge of its operation). The output of the program will always

be the same for the same input data. A program which does not admit concurrency is

always deterministic. Even without being internally concurrent a program can admit
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concurrency if its behaviour can be changed by external events, for example if it accepts

user input at arbitrary points or makes use of time by reading the system clock. The

output of the program is now not only determined by what is input, but also when.

Such a program typically is non-deterministic. Without a precise model of the behaviour

of all external events, the state and output of the program cannot be determined. Such

a model is in general unavailable, particularly when order and time are involved. This

is not least due to time being relativistic and generally infinitely divisible [101].

As noted, concurrency can introduce non-determinism into computer programs [226].

The order of computation can change dependent on the order and timing of exter-

nal events, and the order that concurrent components are scheduled and executed by

computational elements. The goal of expression (2.1.1) is to capture and control non-

determinism so that the state of the program can be reasoned about. This contrasts

with performance (2.1.2) which seeks to admit non-determinism in order to increase the

possible paths to a solution. Ultimately a balance is required so that the program pro-

duces a valid result as efficiently as possible.

To take a more concrete example, recall how we were making marinaded steak

(2.1.3): “we cannot fry the beef before it has been marinaded, and we cannot marinade

the beef before we have made the marinade; however, you can make the marinade

while I go and buy the beef”. There are four events:

A make marinade

B buy beef

C marinade beef

D fry beef

D must follow C and C must follow A and B, but the order of A and B does not matter.

Thus by not determining the order of A and B we allow two different orders to be valid

solutions: A, B, C, D or B, A, C, D. One of these may be more efficient and hence we can

use that order to maximise performance. Importantly A and B both take time so we are

also allowing them to arbitrarily overlap.
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Choice over concurrent events both admits and controls non-determinism. If we

wait for an event A then another event B, and we only allow this order, behaviour is

deterministic (assuming A and B are themselves deterministic). By allowing a choice

over A and B these events can be reordered, admitting non-determinism. If we give

priority to A over B and both A and B occur or are ready simultaneously then A will

always be chosen, controlling non-determinism.

2.3.3.2 Programming Language Support

A variety of choice functions are available in concurrent programming languages al-

lowing a program to select from a set of communication or synchronisation events.

These primitives provide choice over events. Choice over events implies waiting for

events to be invoked by other components. This also implies a race between those com-

ponents as to which will invoked first and hence which event will be ready first. This

race is the source of non-determinism which is admitted into the component making

the choice.

It is important to observe that while it is theoretically possible to have choice over

semaphores and monitors it is not implemented in practice. This is in part due to

semaphores and monitors principle use as mutual exclusion mechanisms. They are

invoked because access to a protected resource is required for the program to continue,

and do not directly model events. Mutual exclusion serialises operations and as such

the race occurs in the order of components reaching the exclusive region. Within the

region a component can make decisions based on the protected state which will not

change for the duration of the region. This is choice over state, the same as if statements,

with the non-determinism occurring outside the mutually exclusive region. This moves

control of non-determinism from the choice to the mutual exclusion primitive. If a pri-

ority is to be applied to operations (choice over events), it is the semaphore or monitor

that must control this. To achieve this the semaphore or monitor needs to be made

aware of the operations. A choice over events in the semaphore or monitor will need
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to work in tandem with a choice over state in concurrent components. From the stand-

point of clarity of expression this can be an undesirable duplication.

Interrupts and signals can be seen as a continuous choice between the running com-

putation and the interrupt. Priorities can be specified such that a high priority interrupt

can occur during a low priority interrupt, but a low priority interrupt cannot occur dur-

ing a high priority interrupt [18]. Interrupts are a priori declaration of choice. Without

explicit engineering it is not possible for a component to know or use knowledge of

such a choice occurring.

Within Actor model style message passing, if a mailbox mechanism is used then the

mailbox can provide choice (over event reception). Message events arrive in the mail-

box where they are buffered. The component can search through the mailbox and select

particular types of message to process, or if there are no messages of the desired type

then wait for them to arrive. Since all events arrive via the single mailbox there is no

choice over primitives, rather the primitive makes the choice on the components’ be-

half. As the mailbox is asynchronous these events do not entail any commitment; more

specifically the messages have already been received so accessing them from the mail-

box does not commit the component to synchronisation with other components unless

the component is explicitly engineered to do so. This pattern is used in many actor

model style implementations. Erlang (2.5.11) and Scala (2.5.26) have mailbox pattern

matching. Akka (2.5.26.1) allows arbitary definition of message receipt handling, in-

cluding mailboxes. However implementations such as Clojure (2.5.9) do not provide

this functionality although it can be implemented.

Operating systems demonstrate an alternative to mailboxes for choice over asyn-

chronous primitives. The POSIX operations select and poll allow a program to test a

number of file descriptors to see if they are ready for input or output (or whether an error

has occurred) [18]. A file descriptor can represent an open file, a system device, a con-

nection to another program on the same system, or a connection over a network. These

operations wait for a primitive to become ready or a timeout to occur. File descrip-

tors are often considered synchronous; however, this is with respect to the underlying
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buffers. A file descriptor which is ready for input represents that the underlying buffer

contains data that is ready. Ready for output means there is space in the underlying

buffer to hold output. This makes file descriptors equivalent to buffered channels and

essentially asynchronous.

2.3.3.3 Commitment

With synchronisation primitives such as synchronous messages (with or without chan-

nels) or barriers, choice carries with it the notion of commitment. If a given option is

selected the component synchronises with other components involved in that primi-

tive. This is significant as the decision of one component implicitly affects other com-

ponents. Consider two groups of people, X and Y, waiting for an individual A. If A

chooses to go with one group, say X, then the other group (Y) will still be waiting. This

behaviour is easy to understand; however, the result becomes more complex if more

than one person (component) is making a choice. Imagine another person, B, is also

potentially involved in both groups and neither group will be complete unless both A

and B choose to go with it. Without communication between A and B, they could select

opposing groups and both groups will wait forever: this is a deadlock.

This scenario can be solved in one of two ways: consult a shared arbiter who makes

the selection in such a manner as to avoid deadlock, or separate choice into multiple

phases of commitment so as to implement a consensus algorithm [256]. Broadly a con-

sensus algorithm involves all components marking the options they are waiting on, and

in doing so if one option gains enough participants then those waiting on that option

are woken up. All components must then remove marks from other options, and if in

doing so a component discovers another option has become ready then that component

must remove all its marks and wake up any component waiting on those options before

restarting from the beginning. Having removed all other marks a component waits on

the committed option for all other commiting components to synchronise. Because this

algorithm can restart any number of times, it can potentially take an infinite amount

of time to complete. A shared arbiter does not have this disadvantage; however, it
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represents a bottleneck and single point of failure in the system.

In addition to the need for consensus between choices there is the possibility of

conflicting priorities, e.g. A prioritises group X while B prioritises group Y. It is not

possible to proceed without violating one of the party’s priorities. This could be con-

sidered a deadlock as neither components request can be correctly satisfied, and hence

a design failure6.

Languages allowing choice between synchronous primitives must address both con-

sensus and priority concerns. The occam language does not allow barriers or output in

its alternation (choice) primitives (2.5.21). This means that output and barrier synchro-

nisation are always fully committed operations. A component selecting over inputs

can make a completely local selection knowing that the sender has committed and will

not backout of their committment. In Google Go the select statement does not allow

priority, but selects arbitarily when multiple options are ready. Simplistically consen-

sus is implemented by locking channels before making a selection such that the state

cannot change during the choice process (providing atomicity), however it is a costly

operation. The JCSP library for Java provides choice over all primitives using a global

arbiter mechanism called an oracle [258, 256]. A generalised choice mechanism without

an oracle has also been developed for Communicating Scala Objects [165].

As previously mentioned (2.3.2.5), futures can be considered channels which only

produce one message. Thus futures can be incorporated into choice in the same man-

ner as channels. The future will always commit to output, simplifying its integration.

Specifically a future only has three states: not ready, ready and read. Transitions between

states are monotonic so once a future is in a ready or read state it will never return to the

not ready state.

6This scenario can be mitigated if tests for availability are used, as conflicting scenario will not be
committed [164].
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2.3.3.4 Time

In addition to the primitives mentioned it is desirable to allow a choice over timing

events. For example making a choice between a mailbox and a relative point in time

provides a timeout, i.e. if there are no appropriate messages in the next period then take

an alternate action. Choice between points in time can be resolved a priori: the earliest

point in time will become ready first. Choice between a synchronisation primitive and

time is simpler than generalised choice between synchronisation primitives. Similar to

state transitions with futures, time is monotonic: a given point has either passed or not.

2.3.3.5 Summary

Choice is important for allowing non-deterministic behaviour. Data-oriented concur-

rency uses implicit choice over state. This is often indistinguishable from choice in a

program without concurrency. Message-passing concurrency uses explicit choice over

events. When choice is made between synchronising events such that circular depen-

dencies could occur, then consensus must be reached through internal or external mech-

anisms.

2.4 Process-oriented Programming

The term process-oriented programming originates in 1992 [102, 263] as a means to

describe the style of programming associated with CSP-inspired languages such as

occam. Definitions of process-oriented programming have varied; however, this the-

sis uses Sampson’s extensive definition [228]. Sampson defines five important aspects

of process-oriented programming: concurrency, isolation, communication, composition and

reasoning.

Concurrency, its implications and uses have been described in previous sections.

Process-oriented programming provides a single primitive for concurrent program com-

ponents, the process. Processes execute in isolation, meaning they do not share resources.
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Where sharing is required it is accomplished by explicit communication; this follows the

mantra “do not communicate by sharing, share by communicating”. Isolation and com-

munication make interactions between processes explicit and prevent many problems

associated with data-oriented concurrency (2.2.1). As previously noted communication

encompasses synchronisation. A process may use any number of communication and

synchronisation primitives; this distinguishes process-oriented programming from the

Actor model (2.2.2) where an actor can only operate on messages explicitly sent to it.

In the process-oriented programming style software is constructed through the par-

allel composition of processes. These form a process network, a graph where processes

are the nodes and communication links between them are the edges. Each process

may be internally concurrent with so called subprocesses, with such details hidden from

the overall system through isolation. This allows a hierarchical model of composition

which bears similarity to naturally occurring structures. For example the human body

is composed of organs, each of which has inner components composed of cells, com-

posed of atoms, composed of subatomic particles. Just as it is possible to reason about

the behaviour of an organ in terms of its external behaviour and function, so it is possi-

ble to reason about processes based on their external behaviour with respect to commu-

nication and synchronisation primitives irrespective of internal processes. For process-

oriented programming this reasoning is aided by process-calculi (2.2.2), in particular

CSP [134, 226] and the pi-calculus [184]. The compatibility between process-oriented

programming and process-calculi is in part due to the propagation of inspiration and

concept between the two [172, 225, 226]. This allows manual or partially automated

proving of properties of process-oriented programs and design patterns, such as dead-

lock freedom [259].

Process-oriented programming advocates the use of concurrency for program struc-

ture: a philosophy with widespread support [37, 202, 228]. It is distinguished by the

use of synchronous rather than asynchronous communication and the use of implicit
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addressing via channels. Synchronous communication aids in both formal and infor-

mal reasoning. Implicit addressing aids abstraction as the programmer uses the inter-

face (or protocol) of a channel separate from how its operations are implemented by a

process or processes [228]. This is an equivalent concept to classes in object-oriented

programming [86].

2.4.1 Primitives

At its simplest, process-oriented programming consists of only concurrent processes

(2.3.1) and synchronous unbuffered unidirectional channels (2.3.2.4) with choice (2.3.3).

Each channel has two ends, one for readers who receive messages from the channel,

one for writers who send messages to the channel. Static process-network channels

need only be point-to-point, that is to say there is only one possible reader or writer of

a channel at a given time. For dynamic process networks shared channels are required,

i.e. a channel can have multiple readers and writers simultaneously. If a channel is

shared, messages must be indivisible such that two messages sent simultaneously, A

and B, are received as distinctly A then B or B then A, not a combination of A and B.

Messages may be of any size, but the minimum size must support the transmission of a

channel end. While a channel may have multiple readers each message sent along the

channel is received by exactly one of those readers; which one is an arbitrary decision.

Additionally when multiple writers attempt to use a channel at the same time which

one proceeds first is also an arbitrary decision. If the progress of all components in the

system is to be guaranteed the aforementioned arbitrary decisions should guarantee

that no reader or writer will wait for ever. This is most simply achieved by the use of

first-in first-out (FIFO) queues for readers and writers.

Given this definition it is (informally) possible to construct all other concurrency

primitives.
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2.4.1.1 Asynchronous Channels

Asynchronous channels can be constructed from two synchronous channels and a pro-

cess, the channel process. Writers use one channel A, the reading end of which is con-

nected to the channel process. Readers use the other channel B, the writing end of

which is connected to the channel process. The channel process moves messages be-

tween A and B dependent on the desired behaviour. This behaviour will typically be

some form of buffer, creating a buffered channel [228].

2.4.1.2 Shared Memory

interface
channel

memory cell
<value>

component
component

component

read <value>write

Each unit of shared memory is represented by a process which holds the shared

data, a memory cell. The memory cell receives request messages on an interface channel.

The writing end of the interface channel is shared amongst the users of the shared

memory. Requests to read or write the shared memory are sent as messages down the

interface channel. A read request message contains a response channel end on which

the result is sent. The memory cell enacts requests on the shared data. This model can

be extended to support atomic operations as the interface channel serialises all requests.

The memory can be made asynchronous if a buffered channel is used for the interface

channel. Notationally this is the same model used to implement shared memory on

modern computer systems (2.6).
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2.4.1.3 Semaphores

semaphore
<count>

component

component

component

wait operation

signal operation

A semaphore can be constructed from one process and two synchronous channels. The

semaphore process maintains the semaphore count. One channel carries P (wait) opera-

tions, and the other channel carries V (signal) operations. A message on the P channel

reduces the count, whilst a message on the V channel increases the count. The contents

of the messages is irrelevant. While the count is greater than zero the semaphore pro-

cess makes a choice between the two operation channels. If the count is zero or negative

then only operations on the V channel are received; this means P operations will wait.

2.4.1.4 Monitors

Essentially a process performs many of the functions of a high-level monitor by design.

A process provides mutual exclusion of operations on its state (ignoring subprocesses),

as it explicitly controls when operations are invoked through the reception of messages.

The monitor primitive assumes that control flow moves into and out of the monitor. For

concurrent processes this assumption is not true, hence removing the need for much of

a monitor’s functionality. Looking at Hoare’s work, monitors can in a sense be seen

as an early version of processes [133, 134]. If monitor-style conditions are required,

these can be implemented within the process receiving operations, the monitor process.

Each request to the monitor process being contains a response channel end. If the re-

quest cannot complete immediately the monitor process queues it internally until its
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conditions are met. On completion of the request the monitor process signals the corre-

sponding response channel end by writing a message to it.

2.4.1.5 Actor Model

An Actor model style system can be modelled by considering each actor as a process,

an actor process. Each actor process has a reading channel end on which it receives

messages from the ether (ether receive channel), and a writing channel end on which it

sends messages to the ether (ether send channel). The ether send channel is shared by all

actor processes, the ether receive channel is unique to a given actor.

An ether process holds the writing ends of all ether receive channels, and the reading

end of the ether send channel. It reads messages from the ether send channel and routes

them to the appropriate ether receive channel based on their embedded addresses. The

ether receive channels can provide common behaviours, for example they could be

buffered channels creating a buffered ether. Alternatively the ether receive channels

could be supplemented with processes which implement mailbox functionality such

as searching over available messages. The ether process could also provide routing

between distributed computer systems each of which has its own ether process in a

model similar to Erlang (2.5.11).

2.4.1.6 Futures

future
<closure>

component

creation
<closure>

component

interface
channel

resolve

read <value>

A future can be implemented by a process and a channel. At the point the future is

created its closure (2.3.1.3) is passed to a new process. This future process computes

the future result and sends it down the channel. To resolve the result of the future the
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creator simply reads the future channel and on receiving the result replaces the channel

with the result. Alternatively the future process might not begin computation of the

future until requested to do so. The future channel direction is reversed, so that when

the creator wishes to resolve the future it requests the result by sending a message with

a response channel on the future channel. The future process computes the result and

sends it on the response channel. This design enables lazy evaluation of futures. The

future process could store the result and provide the stored result on future requests,

allowing shared futures. In principle either of these designs allow future pipelining, as

the future channel can be passed to the closure of another future.

2.4.1.7 Barriers

barrier
<count>

component

control
channel

resign

enroll

component

component

component

synchronisation
channel

A barrier is similar to a semaphore process. If the count of processes synchronising on

the barrier is a constant N, then a barrier can be implemented with one process and

two channels, signal and wait. The barrier process receives N messages from the signal

channel, before sending N messages on the wait channel. Each process synchronising

on the barrier sends one message on the signal channel, before waiting for one message

on the wait channel. Thus the barrier process will not release any waiting processes

until it has received all signals. This requires synchronous channels to prevent sends

on the signal channel completing while the barrier process is still sending messages on

the wait channel.
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Alternatively, for a dynamic barrier the barrier process maintains two counts: the

number of processes enrolled on the barrier, the number of processes synchronising on

the barrier. It has a single operation channel, on which is receives three types of request:

• an enroll request increases the enrolled process count,

• a resign request decreases the enrolled process count,

• a synchronise request increases the count of processes synchronising on the barrier.

With each synchronise request is passed a response channel. If the counts are non-

zero and become equal through a resign request or a synchronise request, then the

synchronising count is reset to zero and the barrier process sends a message on all

response channels before discarding them.

2.5 Concurrency Support in Programming Languages

This section surveys concurrent programming styles and primitives available in pro-

gramming languages and support libraries. Languages in this section were selected on

the basis of popularity (top five languages in TIOBE index [246]), or if they have built-

in support for concurrent programming or a prescribed concurrent programming style.

Each language section begins with table of key facts which are comparable between

languages.

• Type being one of either language, library or interface. A language is a complete

programming language. A library is a set of predefined operations and runtime

support which integrates with one or more languages, but is not built into a spe-

cific language. An interface is a set of standardised operations (API) which may

be incorporated into a language or provided to a language through a library, e.g.

MPI or POSIX.

• Year of first announcement or release. Although development will technically

have begun in years prior.
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• Origin of the language or library, categorised as the type of institution primarily

responsible for development of the language. This is a combination of industry

used to defined any commercial enterprise, government funded research and de-

velopment (e.g. defence sector), academia (i.e. university funded), or community

project (typically open-source).

• Popularity ranking as defined by TIOBE index 2013, see 2.7.1.

• Keywords which describe features of the language, see 2.5.1.

2.5.1 Keywords

The keywords used to describe languages in this section are defined as follows.

• actor model: directly cites inspiration from the Actor model, see 2.2.2.

• channels: has channels, see 2.3.2.4.

• C-syntax: use a syntax derived from the C programming language.

• CSP: directly cites inspiration from CSP, see 2.2.2.

• data-oriented: focuses on data-oriented concurrency, see 2.2.1.

• functional: is intended for functional programming, see 2.1 and 2.2.3.

• futures: has futures, see 2.3.2.5.

• lazy: uses or supports lazy evaluation, see 2.3.2.5.

• mailboxes: has mailboxes with asynchronous messaging, see 2.3.2.4.

• messages: has generalised messages which are not directly related to Actor model,

channels or mailboxes.

• monitors: provides monitors, see 2.3.2.1.

• OO: is intended for use with object-oriented structures, see 2.1.
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• PGAS: uses a partitioned global address space model, see 2.2.1.

• semaphores: provides semaphores, see 2.3.2.1.

• vectorising: uses vector techniques to implement parallel processing, see 2.2.1.

2.5.2 Ada

Type: language

Origin: government

Year: 1980

Popularity: 20

Keywords: CSP, OO, POP

Ada was developed as a unifying language by the US Department of Defense to

reduce the number of languages in use in defense projects [137]. Due to its properties

it has found use in real-time and safety critical applications such as air traffic control

systems [105].

Ada has a concurrency model with a concurrent components called tasks, which

are essentially coroutines (2.3.1.3) [82]. Tasks can synchronise with other tasks through

defined entry points (inspired by CSP events [226]). These entry points can carry data,

which makes them a form of explicitly addressed synchronous message passing (2.2.2,

2.3.2.4). Choice over entry points is possible and can be combined with time delays.

Entry points provide extended rendezvous, a form of synchronisation where control is

passed through the entry point and does not return until the task that has been invoked

is ready. This means that while Ada does not have channels, tasks can be used to

implement synchronous and buffered channels. Thus Ada supports process-oriented

programming in principle.
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2.5.3 Alice

Type: language

Origin: academia

Year: 2000

Keywords: data-oriented, functional, futures, lazy

The Alice programming language is an extension of Standard ML designed to sup-

port logic (fifth generation) programming [155, 231]. This is achieved through intro-

duction of promises and explicitly lazy evaluation [227]. Expressions explicitly desig-

nated lazy create a future, and a promise is an explicit future. Additionally an arbi-

trary closure can be declared concurrent. Alice adds a data-oriented (graph reduction)

model of functional concurrency to Standard ML, whereas Concurrent ML (2.5.10) adds

a message-passing model.

2.5.4 C

Type: language

Origin: industry (Bell Labs)

Year: 1973

Popularity: 1

Keywords: C-syntax

The C programming language is included here only to give complete coverage of

the top five most popular programming languages. C does not have any embedded

concurrency support, although it is commonly used with POSIX threads (2.5.24). It was

intended as a high-level language for implementing operating systems which were at

the time still developed in assembly language [208]. For this reason it was designed so

as to have an efficient mapping into machine instructions [215]. This has often led C to

be referred to as a high-level assembly language.
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2.5.5 C#

Type: language

Origin: industry (Microsoft)

Year: 2000

Popularity: 5

Keywords: C-syntax, data-oriented, functional, futures, monitors, OO, semaphores

C# can be seen as Microsoft’s response to the release and relative success of Java.

Both languages take a C-syntax and add object-oriented programming features, au-

tomatic memory management and a managed runtime environment (see 2.5.17 for

details). Over time C# has developed to include functional programming features

and support task-based asynchronous programming. The asynchronous programming

model is essentially futures with a programming style similar to that of Cilk (2.5.8). C#

also includes common data-oriented concurrency primitives such as semaphores and

monitors.

An extension called Polyphonic C# adds concurrency based on the join-calculus [55].

Critically this adds asynchronous method calls and so called active objects [160]. Syn-

chronisation patterns called chords can be used to connect asynchronous methods. A

chord cannot complete until its component synchronisations are performed. Work on

Polyphonic C# has moved to a new language Cω (C Omega) [56].

2.5.6 C++

Type: language

Origin: academia / industry

Year: 1983

Popularity: 4

Keywords: C-syntax, data-oriented, futures, OO, semaphores

The C++ programming language was designed as an object-oriented extension to

the C programming language. The C language was used for its performance and
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low-level access, while objected-oriented features were incorporated from SIMULA (an

ALGOL derivative). In addition to an object-oriented programming style, one of C++’s

defining features is its standard template library. This provides generic algorithms that

save programmers from rewriting or incorporating their own implementations of com-

monly used programming patterns.

C++ has continued to develop and new standards are defined approximately every

four to five years. While the original language contained no concurrency model, the

current direction in software development has lead the most recent revisions of the lan-

guage and standard library specifications to address concurrent programming [20, 17].

Amongst these changes are the introduction of a memory model which specifies the be-

haviour programmers should expect when using shared memory with potential races;

this mirrors work done on the Java memory model (2.5.17). The C++ standard li-

brary now contains atomic variables, threads, semaphores, futures and condition vari-

ables. These features in general mirror those supported by the POSIX threads interface

(2.5.24). An extended standard library called Boost adds message queues which are

similar to channels as well as barriers [22]. However choice over these and other prim-

itives is not supported.

2.5.7 Chapel

Type: language

Origin: industry (Cray)

Year: 2004

Keywords: data-oriented, futures, OO, PGAS

Chapel is an explicitly parallel programming language developed by Cray as part of

their participation in DARPA’s High Productivity Computing Systems program [68, 4].

Chapel has no notion of threads of execution, but has subcomputations or tasks which

may be executed concurrently [64, 67]. In line with the partitioned global address space
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model, Chapel allows the placement of tasks and their data in a locale (part of the com-

puter system); however, data can be accessed between locales. Tasks can synchronise

through a sync statement, a form of barrier (2.3.2.2), but cannot choose between syn-

chronisations. Data can be made atomic such that operations upon it are serialised.

Critically Chapel has sync variables, these can be single use where reads wait until a

write occurs which may only happen once, in which case these provide futures. Alter-

natively in general use reads empty the variable allowing further writes. Writes wait if

the variable is already full; in this use sync variables provide single place buffered chan-

nels. Without choice (2.3.3), Chapel admits only implicit non-determinism through the

order in which operations access sync variables.

2.5.8 Cilk

Type: language

Origin: academia

Year: 1994

Keywords: C-syntax, futures

Cilk adds to the C language a concurrency model based on tasks with well-structured

computational dependencies (directed acyclic graphs) [58]. The programmer spawns

concurrent tasks which are functions that return a result, and a sync operation can be

used to wait for these functions to complete. Tasks are essentially futures with the sync

operation forcing resolution. Additionally inlets add custom synchronisation between

a task and other tasks it has spawned.

The novelty of Cilk is its use of a last-in first-out (LIFO) scheduler to execute its

simple fork/join model. Such a scheduler can be efficiently implemented on a multi-

processor computer using work-stealing (see Chapter 3). This technique has been repli-

cated in other languages such as Java and X10 [161, 79]. Intel provides a commercial

implementation of Cilk alongside their Thread Building Blocks library (2.5.16).
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2.5.9 Clojure

Type: language

Origin: academia

Year: 2007

Keywords: data-oriented, functional

Clojure is a Lisp (2.1) inspired functional programming language which runs on top

of Java’s virtual machine (see 2.5.17) [131]. This allows Clojure to integrate with existing

Java code and access Java’s standard library, an approach similar to that taken by Scala

(2.5.26). A pure functional model with immutable state removes many data-oriented

concurrency concerns from the language. Software transactional memory (2.2.1.2) is

used where state needs to be shared between concurrent tasks. Clojure also supports

concurrent agents; however, these are reactive and not autonomous, and as such can be

seen as continuations. Java’s concurrency primitives such as message queues can be

used to implement communication channels between agents.

2.5.10 Concurrent ML

Type: library

Origin: academia

Year: 1996

Keywords: channels, functional, messages

Concurrent ML is a extension to Standard ML which adds lightweight concur-

rency primitives [212]. Synchronous and asynchronous channels are supported, along

with choice over channels and timers. This means Concurrent ML supports a process-

oriented style of programming. Multiprocessor execution is not supported so Concur-

rent ML’s concurrency is for expression not performance, although a parallel implementa-

tion has recently been developed [211]. Work on concurrency in ML has largely moved

on to Manticore (2.5.18).
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2.5.11 Erlang

Type: language

Origin: industry (Ericsson)

Year: 1986

Popularity: 34

Keywords: actor model, functional, mailboxes

The Erlang programming language originated in the telecommunication sector where

it was designed for implementing concurrent programs that ran, potentially, forever [38].

Continual operation is supported by the ability to replace code on the fly. Concurrent

processes with isolated state and communication by asynchronous message passing

ease the construction of programs to support code replacement at runtime.

Process mailboxes are the endpoints for all communication. Any process can estab-

lish communication with another if it holds its identifier. Identifiers themselves can be

communicated allowing arbitary communication graphs to be constructed. Each pro-

cess has a single mailbox which it can poll or wait on for messages. When a process

attempts message receipt it can specify matching patterns (filters or priorities) based on

message elements.

2.5.12 Fortress

Type: language

Origin: industry (Sun)

Year: 2004

Keywords: data-oriented, futures

Fortress, like Chapel (2.5.7) and X10 (2.5.29), was developed as part of Sun’s involve-

ment in DARPA’s High Productivity Computing Systems (HPCS) program [4]. How-

ever development has now ceased due to Sun being dropped from the HPCS program

and Sun’s sale to Oracle. Fortress was intended as a “secure FORTRAN”, although it

does not directly inherit FORTRAN’s syntax [28].
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Fortress’s concurrency support is minimal, opting for a model based on automatic

parallelisation. For example loops are implicitly executed in parallel, function and

method calls can be evaluated in parallel. Atomic, mutually exclusive, regions are sup-

ported; however, unsafe concurrent manipulations are not precluded by default. Ex-

plicit futures are supported, and many of the implicit parallelism features use implicit

futures.

2.5.13 Google Go

Type: language

Origin: industry (Google)

Year: 2009

Keywords: C-syntax, channels, CSP, data-oriented

Google Go is a CSP-inspired language with a C-syntax. The developers advocate

the use of concurrency for program structure, i.e. expression (2.1.1) [202]. It is the

latest in a line of CSP-inspired languages which find their origins in the Plan 9 oper-

ating system [203]. In particular Go’s channels can be traced back to Newsqueak, a

language designed for developing graphical user interfaces (an inherently concurrent

problem) [201].

Go’s unit of concurrent execution is called a goroutine. Channels provide synchro-

nisation and communication between goroutines and can be synchronous or asyn-

chronous. While channels are provided shared mutable data is also available and un-

safe manipulation of the shared state is possible. Choice between channels and timers

is possible via a select primitive. Thus Go supports process-oriented programming in

additional to data-oriented style concurrency.
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2.5.14 GPGPU: CUDA and OpenCL

Type: library

Year: 2003

Keywords: C-syntax, data-oriented, vectorising

CUDA and OpenCL are two extensions to the C programming language to enable

so called “General Purpose computing on Graphics Processing Units” or GPGPU. In

essence both extensions permit the general programming of specialised highly parallel

vector processors designed for handling floating point numbers. The use of a mixture

of processor types, for example a GPU together with a general purpose processor, is

often called manycore.

At its simplest the programmer implements a kernel which will execute in parallel

on the GPGPU hardware. The kernel performs computation on a block of data modi-

fying it or producing separate output. The runtime system replicates the kernel across

the available hardware resources, perhaps creating hundreds of instances. The kernels

process data which has to be partitioned a priori by the programmer.

Kernels can contain barrier synchronisation operations; however, these and branch-

ing within a kernel greatly reduce performance. The kernels are executed lock-step

on a massive vectorised processor hence if one kernel diverges from the execution

path the other kernels it shares an execution unit with must stall. Fundamentally this

makes GPGPU programming much more suited to well-defined processor intensive

tasks rather than dynamic or responsive applications. GPGPU maps well to the Stream

programming paradigm [62].
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2.5.15 Haskell

Type: language

Origin: academia

Year: 1990

Popularity: 33

Keywords: data-oriented, functional, futures, lazy

Haskell is a pure and lazy functional language. Concurrency in Haskell focuses on

deterministic and often implicit parallel graph reduction, a safe form of data-oriented

concurrency. This relies heavily on Haskell being a lazy functional language. All val-

ues in Haskell are internally represented by primitives called thunks. A thunk is a sus-

pended closure which on activation computes a value to replace the thunk. These are

equivalent to futures which are resolved as needed. Significant work has been done on

automatic parallelisation of these potential futures [124, 170].

While non-deterministic interaction between concurrent components is not an in-

tended programming model for Haskell, it does support concurrency primitives. Haskell’s

MVar primitive behaves as a one-place buffered channel (2.3.2.4) [123]. Additionally

work has been done on implementing CSP-inspired computation in Haskell [60]. These

mean that in principle Haskell can support process-oriented programming.

2.5.16 Intel Thread Building Blocks

Type: library

Origin: industry (Intel)

Keywords: data-oriented, vectorisation

Intel Thread Building Blocks is a C++ library which provides templates for breaking

programs structured around shared data and loops into tasks. An efficient task sched-

uler executes these tasks using a pool of threads suitable for the host system. Tasks

are more fine-grained than direct POSIX threads and hence the resulting software has

a higher degree of internal concurrency. The programmer is permitted to think at a
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higher level than threads, focusing on computation to be done rather than partitioning

computation accross threads and maintaining synchronisation.

Tasks are assumed to contain non-blocking computations which have implicit syn-

chronisation and dependencies as defined by the loop structure which created the task.

For example the parallel for construct executes like a traditional for-loop, but creates

one task per element. In order to avoid excessive synchronisation overheads, tasks are

automatically coalesced in a number of constructs. The model is broadly similar to that

of Unified Parallel C (2.5.28), and as vectorisation is similar to GPGPU (2.5.14).

2.5.17 Java

Type: language

Origin: industry (Sun)

Year: 1995

Popularity: 2

Keywords: C-syntax, data-oriented, monitors, OO

The Java programming language is broadly similar to C++ (2.5.6) in motivation and

design. It takes a C syntax and adds an object-oriented programming model and stan-

dard library [117]. Java’s object-oriented model is simpler than C++’s and its standard

library significantly more extensive. However the critical difference between the two

is that Java uses a managed runtime environment, which allows programs written in

Java to run on any computer with the appropriate runtime environment without being

specifically compiled for that computer. The managed runtime environment also pro-

vides automatic memory management, removing memory allocation and deallocation

concerns from the programmer. Essentially the runtime environment or runtime sys-

tem is a virtual machine (2.1) which is simulated by the host computer. The Java virtual

machine is now used by many more languages than Java, notably Scala (2.5.26) and

Clojure (2.5.9).

Java incorporates a basic data-oriented concurrency model by design. Every object
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has an associated monitor and blocks of code can explicitly synchronise using this mon-

itor to provide mutual exclusion. Like C++, Java defines a memory model describing

the interactions of concurrent modifications to shared data, although its initial specifi-

cation was flawed and required significant revision [206, 168]. The standard library has

grown significantly over time and now includes many concurrency primitives, such

as barriers, futures and message queues which can be used as synchronous channels

(2.3.2.4). Choice over these primitives is not supported, athough message queues and

futures can be polled for readiness.

2.5.18 Manticore

Type: language

Origin: academia

Year: 2007

Keywords: channels, functional, messages

A successor language to Concurrent ML (2.5.10), Manticore attempts to address

heterogeneous parallelism [108]. Heterogeneous parallelism describes systems com-

posed of multiple processors with different capabilities, for example a computer with

a general purpose processor and a graphics co-processor (see GPGPU 2.5.14). Essen-

tially Manticore incorporates all primitives of Concurrent ML, channels, messages and

choice, and thus also supports process-oriented programming. It adds multiprocessor

execution and data oriented vector operations. In order to test different scheduling

models various granularities of scheduling are supported including processes, threads

and fibers (2.3.1).
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2.5.19 Message Passing Interface

Type: interface

Origin: academia

Year: 1992

Keywords: channels, messages

Message Passing Interface (MPI) is a standardised system for the exchange of mess-

sages between distributed computers [236]. Its goals are broadly similar to the Parallel

Virtual Machine (2.5.23). Support for MPI has been implemented in a broad range of

languages and thanks to standardisation these implementations can (in principle) inter-

operate.

MPI provides operations for starting concurrent processes; technically one is created

for each physical processor in the computer system. These processes are considered iso-

lated and do not share memory. Processes create windows into which data can be written

with a put operation or retrieved with a get operation. These windows are in a sense

buffered channels (2.3.2.4). In addition to these primitives, collective operations are sup-

ported for broadcasting or scattering data to a number of processes, and/or gathering

data responses. MPI provides a coarse-grain form of process-oriented programming,

although synchronisation support is limited.

2.5.20 Objective-C

Type: language

Origin: industry (Apple)

Year: 1983

Popularity: 3

Keywords: C-syntax, messages, OO

Objective-C adds object-oriented style programming to C based on Smalltalk’s mes-

saging style (2.5.27). This message model, where objects are used by sending them mes-

sages, contrasts with C++ (2.5.6) which also adds object-oriented programming to C
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and was developed at broadly the same time as Objective-C. As a consequence of this

difference in design, Objective-C permits dynamic typing and asynchronous method

invocation. Like Smalltalk this makes Objective-C an Actor model language, although

objects are not explicitly concurrent entities.

Objective-C relies heavily on an event-driven style of programming (2.2.3), with

one or more threads dispatching events to objects by invoking their methods. There

is a main thread where the majority of events are dispatched. As the dispatch loop

serialises concurrent events, data-oriented concurrency errors can be avoided unless an

event is explicitly assigned to another thread, in which case it should be designed to

handle concurrency. The disadvantage of this approach is that long running methods

can block the dispatch of new events.

More recently Objective-C has added support for blocks which are closures (2.3.1.3).

These can be placed on queues from where they are executed on available processors

by a system called Grand Central Dispatch. Objective-C has seen a recent surge in

popularity as it supports development for Apple’s popular mobile phone and tablet

devices.

2.5.21 occam

Type: language

Origin: industry

Year: 1983

Keywords: channels, CSP-inspired, process

The occam programming language was developed to directly support the program-

ming of the Transputer processor [172]. The Transputer had a hardware scheduler

which supported inter-process communication via synchronous channels. Critically

the Transputer also had four external communication links which were addressed by

software in the same way as internal communication channels, providing an almost
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seamless mechanism to distribute a concurrent program accross multiple physical pro-

cessors [53, 138].

Channels in occam have two endpoints and are unidirectional. The sender writes

to one end of the channel, the receiver reads from the other. For the communication to

complete both parties must be present to complete the rendevous. A process may op-

tionally wait for input on a number of channels concurrently, providing choice. Choice

over output is not supported.

Due to the low overheads associated with process creation and context switching

provided by the hardware scheduler, the occam language permits concurrency on a

line-by-line basis at the source code level. The associated design methodology is that

scenarios typically handled by explicit programmer serialisation of a problem or use of

polling be instead solved by use of concurrent program elements.

As a programming language, occam closely matched the Transputer hardware in its

feature set and could be described as a high level assembly language for the Transputer.

However in addition to the hardware access provided by occam, it implemented strict

control of resources to prevent race conditions. Specifically all unsafe uses of shared

memory are disallowed at compile time and channel ends can only be held by a single

writer and reader at a given time. As such the semantics of the language closely model

those of CSP by design (2.2.2), and occam supports process-oriented programming.

An extension called occam-pi adds support for the mobility of data and channel

ends based on the pi-calculus [257]. Prior to this extension the program network would

need to be computable at compile time. With occam-pi any number of processes can be

created at runtime and connections between these arbritarily established and changed.

2.5.22 OpenMP

Type: interface

Origin: industry

Year: 1997

Keywords: barriers, data-oriented
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OpenMP is a language agnostic interface to shared-memory multiprocessing facili-

ties [19]. It was developed by a consortium of commercial organisations, but the speci-

fication is maintained not for profit. Due to the Fortran interface, OpenMP is often used

for parallelising scientific computations which are written in Fortran [69, 93].

The programmer annotates existing programs with OpenMP pragmas, allowing for

parallelising existing code. The primary programming style is loop parallelism simi-

lar to Intel Thread Building Blocks (2.5.16). Annotated loop statements are executed

in parallel such that the system runtime then divides the loop work between avail-

able processors. Additional annotations then modify the visibility and access patterns

of data between parallel computations and add synchronisation points, such as barri-

ers. OpenMP’s simplified concurrency model aids conversion of existing program code

compared to other methods such as POSIX threads (2.5.24), although the runtime may

use these to implement the annotations. The major limitation of this approach is that

it assumes a shared-memory computer systems. Additionally parallelising of existing

code without static checking can lead to unforeseen errors [241].

2.5.23 Parallel Virtual Machine

Type: library

Origin: academia

Year: 1989

Keywords: messages

The Parallel Virtual Machine (PVM) was developed to allow the programming of

a number of separate distributed and heterogeneous computers as a single virtual ma-

chine [112]. At its core PVM provides operations for starting tasks on remote computers

and communicating with them via messages. This structure acknowledges the archi-

tecture of the virtual machine is distributed and provides tools for moving data and

routing messages. PVM was suceeded by MPI (2.5.19).



CHAPTER 2. CONCURRENCY 99

2.5.24 POSIX Threads

Type: interface

Year: 1993

Keywords: data-oriented, monitors, semaphores

POSIX threads are the most common means to access concurrent execution of pro-

gram elements. All common operating systems support POSIX threads and likewise

access to them is widely integrated in programming languages. Each POSIX thread

created by a program executes concurrently with all other threads in the program and

shares memory space with them. Threads are operating system primitives and may ex-

ecute in parallel if the operating system schedules them as such. Access to memory by

concurrent threads is not mediated and without use of additional POSIX primitives or

suitable hardware instructions it is not possible to avoid race hazards between threads.

The programmer can mediate concurrent memory access using POSIX primitives,

the most common of which are mutual exclusion locks and condition variables (2.3.2.1).

A mutual exclusion lock can only be held by one thread at a time, other threads attempt-

ing to take the lock must wait for it to be released (or poll it as appropriate). This per-

mits the implementation of critical regions in which only one thread modifies an area

of memory. A condition variable allows the signalling of one or more threads which

are waiting for the signal. The overheads of POSIX threads and associated primitives

are heavily dependent on the host operating system’s implementation. Further to this

as POSIX only provides low-level primitives there is no standard design methodology

for POSIX threads.

2.5.25 Rust

Type: language

Origin: community (Mozilla)

Year: 2010

Keywords: C-syntax, channels
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The Rust language, in development by the Mozilla Foundation, uses a C++ inspired

language syntax (2.5.6) and provides explicit concurrent programming [23]. A con-

current component is a task, which is a form of coroutine (2.3.1.3). Unsafe sharing is

forbidden by design, i.e. there is no mutable shared data. Sharing is facilited by com-

munication through synchronous and asynchronous channels. Each task has ports on

which it receives messages from channels connected to that port. Choice between ports

is provided by a select primitive. As such Rust provides a strong process-oriented pro-

gramming model.

2.5.26 Scala

Type: language

Origin: academia

Year: 2003

Popularity: 35

Keywords: actor model, channels, functional, futures, mailboxes, OO

Scala was designed as a successor to Java (2.5.17) integrating functional program-

ming features. This is enabled by seamless integration between Java and Scala code

made possible by the use of the same virtual machine runtime enviroment (JVM) [229].

Scala provides a concurrency model based on Actor model semantics with asynchronous

messages and mailboxes [195]. The sender address is automatically embedded in mes-

sages. This enables a mechanism for simulating synchronous messaging and for for-

warding messages impersonating the original sender. Buffered channels are provided

using synchronous messaging with an actor emulating the channel, no direct commu-

nication between actors becomes a special case of channel communication. This allows

protocols to be defined between senders and receivers.
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2.5.26.1 Akka

As of version Scala 2.10.0 released in January 2013, Scala’s Actor model implementation

has been migrated to an external library called Akka. Akka’s implementation is also

usable from Java (2.5.17), and supports distributed communication between separate

programs which may be on separate computers.

2.5.27 Smalltalk

Type: language

Origin: industry (Bell Labs)

Year: 1973

Popularity: 37

Keywords: actor model, messages, OO

Smalltalk was one of the first object-oriented programming languages and a direct

descendent of Simula 67 [150]. In Smalltalk everything is an object, including primitive

types such as integers. All operations on objects (method invocations) occur seman-

tically and syntactically as the passing of messages between objects. For example the

addition of two numbers is the sending of a addition message to the first operand with

the second operand as the message body, the result being returned as a message.

Objects are all independent entities (instances of classes) with their own memory.

While objects are conceptually concurrent entities under normal circumstances execu-

tion of one object is suspended when it sends a message to another. Multiple threads of

execution can be created and are scheduled by the language runtime, allowing for con-

current execution of objects and their method invocations [238]. Smalltalk was pivotal

in the development the Actor model (2.2.2) [74].
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2.5.28 Unified Parallel C

Type: language

Origin: academia

Year: 1999

Keywords: barriers, data-oriented, messages, PGAS

Unified Parallel C (UPC) adds explicit support for distributed shared memory or

partitioned global address space systems to C [81]. UPC adds keywords for distribut-

ing operations across all available computation elements in the computer system and

allocating memory or globally with respect to the location of a computation. Accesses

to global memory are implicitly converted to messaging requests between computa-

tion elements. In order to synchronise distributed computations barriers and locks are

added. Summarily, UPC adds the minimum level of support required run a single C

program on a large distributed computer system. The goal is the same as MPI (2.5.19),

but using a data-oriented rather than message-passing model.

2.5.29 X10

Type: language

Origin: industry (IBM)

Year: 2004

Keywords: barriers, data-oriented, futures, monitors, OO, PGAS

X10 is an explicit parallel programming language, which similar to Chapel (2.5.7)

has been developed as part of IBM’s involvement in DARPA’s High Productivity Com-

puting Systems program [70, 4]. A Java-like (2.5.17) syntax is used with a partitioned

global address space model (2.2.1), which allows an object-oriented style of program-

ming with globally addressable objects. This is a very intentional design intended to

allow easy transformation of existing Java code to X10.

X10’s primary concurrency mechanism is an async statement which begins compu-

tation concurrent to the running computation. This is similar to Cilk (2.5.8). These
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computations can be distributed between available computation sites or places. Atomic

statements which serialise access to data are available: these may also be conditional

which makes them essentially monitors (2.3.2.1) without low-level access. In addition

to these mechanisms futures are also provided. Finally, barriers (2.3.2.2) and an ex-

tended form called clocks are provided for synchronising concurrent computations.

These mechanisms imply locking, but low-level locking is not available to the program

code so as to avoid data-oriented deadlock issues.

2.5.30 XMOS XC

Type: language

Origin: industry (XMOS)

Year: 2005

Keywords: C-syntax, channels

XMOS XC is a version of C which adds support for processes and channels, in or-

der to support XMOS’s xCORE processors [174, 252]. This mirrors the development of

occam (2.5.21) for the Transputer processor (2.6.2). Processes in XC are mapped directly

to hardware computation elements meaning the programmer is limited at design time

to the number of threads available in processor (a multiple of the number of cores).

This is a contrast from occam which was not limited by the number of processors; how-

ever, this restriction allows the processor to guarantee the response time of any given

concurrent process, a critical concern in real-time systems.

The XC compiler disallows unsafe data sharing between concurrent processes. Syn-

chronous and asynchronous channels can be used to support data sharing between

processes. Additionally ports are provided for communication between processes and

external components. A port can have a communication rate with which a process can

synchronise. Choice over channels, ports and timer events is provided.
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2.6 Concurrency Support in Hardware

Previous sections have broadly reviewed support for concurrency mechanisms in pro-

gramming languages. This section describes the development of support for these

mechanism in hardware.

In section 2.1.1, I described how a computer’s operating system needs to address

concurrency concerns related to the concurrent operation of hardware. However the

description given assumes only a single processor which manipulates the computer’s

state. In the early 1960’s computers with multiple processors began to emerge, for ex-

ample Burroughs D825 in 1962 which could have up to four computer modules [32]. Mul-

tiple processors are desirable to increase the computational capacity of the computer

and provide fault tolerance, whereby the computer can continue to operate with reduced

capacity in the event of component failure. These systems were multiprogrammed: a sep-

arate program was run on each computer and there was no direct interaction between

these programs. Only the operating system caused interaction between processors in

order to assign processors and other resources to programs.

Another early commercial multiprocessor system the UNIVAC 1108 in 1966 added

an explicit test and set instruction [237]. This allowed the programmer to atomically

test and set a memory location in the same cycle. If the memory location was already

set then the instruction would cause an interrupt and invoke the computers operating

system to intervene. This mechanism allowed mutual exclusion of critical regions.

Many early computer systems used asymmetric multiprocessing. In an asymmet-

ric system not all processors run at the same speed or have the same access to system

resources. Input and output devices might be connected to a main processor which is

responsible for managing the system and moving data, worker processors are then con-

nected to the system’s memory. Any output from a worker processor must go via the

main processor. Early asymmetric multiprocessing was primarily motivated by cost,

for example slower cheaper worker processors could be added to an existing system

structure to increase capacity cost effectively [85].
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Figure 12: Overview of a symmetric multiprocessor architecture. Processes are multi-
plexed onto processors by the operating system. Memory banks are accessed by pro-
cessors over a shared bus.

The alternative to asymmetric multiprocessing is symmetric multiprocessing (SMP).

All processors run at the same speed and may use the same clock signal synchronising

their communication with shared memory and other devices. In such a setup all pro-

cessors have equal access to system resources and programs can execute on any part of

the computer with the same performance characteristics. A symmetric design assumes

a shared memory space, as shown in figure 12.

In the 1970s computer networks began to emerge, the most notable being ARPAnet,

a forerunner to the modern Internet. These networks provide another view of asym-

metric multiprocessing where a larger computer system can be built from many smaller

computers without a shared memory space. Up to this point data in a multiprocessor

system was transferred through shared memory, but without shared memory explicit

communication via messages was required.

By the early 1980s computer systems can be segregated into three tiers based on

scale:

• Micro-computers: single processor machines which fit on a desk and have a single

user.
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• Mainframes: servers and workstations, larger installations serving many users

or users with special requirements. These essentially maintain the structure of a

single SMP computer.

• Super-computers: systems composed of many independent computers, used pre-

dominately for scientific computing.

The micro-computer, or personal computer tier was heavily influenced by the Apple II in

1977 and the IBM PC (Model 5150) released in 1981.

Through the 1980s and early 1990s personal computer makers grow in size and

strength, micro-computer architecture systems begin to be used for tasks previously

done by larger mainframe computers. However at the same time super-computers

continue to grow in size exponentially. A new tier of embedded computers emerges, de-

vices which are not general-purpose computers, but contain a computer to provide or

enhance functionality. Classic examples of embedded computers are video recorders,

washing machines and computer games consoles.

By the mid-90s five main processor types are in use, each focusing on a particular

tier:

• DEC Alpha, used in servers;

• IBM POWER, used in mainframes, specialist computer systems, and a derivative

called PowerPC used in personal computers, particularly those built by Apple;

• Intel x86, used in personal computers;

• MIPS, used in embedded systems and SGI super-computers and workstations;

• Sun SPARC, used in servers from Sun and super-computers from Cray.

This field then shrinks over the next decade and up to the present day. DEC Alpha

ceases to be developed and is sold to Intel. Cray and SGI merge before Cray sells parts

of its business to Intel. Sun ceases development on SPARC and switches to Intel archi-

tecture before being bought by Oracle. Apple switches from PowerPC to Intel x86 for its
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personal computers. MIPS sees a significant decline in use. A range of architectures us-

ing IBM POWER are unified under the more general Power instruction set architecture

(Power ISA). The x86 architecture is licensed by other processor manufacturers, most

notably AMD, who extend it with 64-bit support. However, strengthened by a grow-

ing mobile phone market, the ARM architecture has grown to significant prominence.

Additionally, special purpose graphics co-processors based on vectorising (SIMD) have

gained general programming capability, GPGPU (2.5.14), and find use in scientific com-

putation.

Essentially this leaves four major processor types in use today: ARM, Power, x86

and GPU. All of these have gained multiprocessor or multicore support through the

direction of recent changes in hardware development (2.6). Evolving from single to

multi-processor architectures all of these processor types have a shared memory model.

However the behaviour of this shared memory varies between processor types.

All modern processors contain cache memory. This cache maintains copies of data

stored in main memory, but is much faster to access. Faster memory (SRAM) used to

build cache is more expensive to produce and requires more energy to operate, so only

small quantities are provided. Cache is required because processors operate signifi-

cantly faster than main memory (built from DRAM), or rather it is not cost-effective to

have a main memory (built from SRAM) that operates at the same speed as the proces-

sor. Main memory can also be seen as a cache for persistent storage on disks.

Cache forms a hierarchy, with level one or L1 cache closest to the processor core.

Assuming a normalised size of 1 for the L1 cache, then main memory is in the order of

105 times the size of L1. Typically a second level of cache, L2 cache, will be added to the

processor to further smooth performance differences, and this is 102 times the size of

L1 cache. The L2 cache may be shared between cores, but if it is not then often a further

L3 cache is added which is shared between cores, this is around 10 times the size of L2,

so 103 times the L1.

Data within a processor cache memory is organised in cache-lines [99]. These are

64 bytes in size on x86. When data is loaded from and written to main memory, or
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between caches, it is moved in cache-line sized units. This is to mitigate the latency

effects of memory accesses, i.e. the round trip time to access memory is the same up to

a particular size. Therefore we should move the maximum amount of data possible to

avoid extra trips. To analogise, if it takes the same minimum amount of time for a letter

to travel through the postal system as a parcel, then we can send or receive 100 letters

(in a parcel) from the same places in the same time as one letter.

Cache has two implications in a multiprocessor system.

1. It reduces load on the shared main memory. This is important as the main mem-

ory bandwidth, the amount of data that can be transferred into or out of main

memory, will be shared.

2. Aliasing and synchronisation problems can occur because multiple copies of the

same data can exist in the system. Cores working on the same data must maintain

cache coherence.

Cache coherence is maintained by inter-processor communication. Simplistically,

when one processor updates a cache-line in main memory, it must invalidate any copies

of that cache-line in all other processor caches [143]. Hence when another processor

reads the data it retrieves an updated copy from the main memory. Such invalidation is

however not immediate. If one processor wishes to modify a cache-line which has been

modified and cached by another processor it must request ownership from that proces-

sor. This can involve the cache-line being written back to main memory before being

loaded by the requester7. Compared to simply loading data from memory this synchro-

nisation is a time consuming operation. Worse if the original owner wishes to modify

the cache-line again, the whole process must be repeated. This effect is called cache

ping-pong as the cache-line moves back and forth like a ping-pong ball. Cache ping-

pong occurs when two processors are working closely on a shared piece of data [99], or

on data which is not intended to be shared but is on the same cache-line, false sharing.

7Modern processor architectures can transfer cache-lines between directly between processor caches
without writing back to main memory.
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Multiprocessor memory access is further complicated by the superscalar behaviour

of modern processors such as read and write buffers. Write buffers in the processor

mean it can take many steps for a given update to memory to reach the cache let alone

the main memory. Within the same processor reads will load values from the buffer, but

the contents of this buffer are not visible to other processors. Critically the processor

might reorder writes in the buffer to improve performance (sequential writes to mem-

ory are faster than unordered writes) [99]. The order of memory operations (reads and

writes) performed by the program and the order of operations observed by other pro-

cessors (and hence programs) in the system may not be consistent [169]. This matters

because synchronisation between concurrent components may depend on the order of

operations [157]. Imagine that component A writes memory at location X before mod-

ifying location Y to indicate data is ready in X. Component B tests location Y to see if

data is ready before reading it from location X. For this synchronisation to work the

changes to X must become visible before or at the same time as Y. This order of events

often does not hold true in a modern multiprocessor system [199].

Memory order is one of the large differences between the major processor types.

Intel x86 provides a total store order model, such that writes to a memory location by

one processor are seen in the same order by other processors [143, 199]. This model

guarantees that writes become visible to all processors at the same time. Power and

ARM processors do not provide the same guarantees. In the case of Power this is for

mostly historic and performance reasons. For ARM this is to reduce complexity and

power consumption from the additional hardware required to implement total store

order. These architectures can arbitrarily reorder reads and writes to memory, including

speculatively reading data, and do not guarantee that writes become visible to all other

processors at the same time.
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2.6.1 Synchronisation

Within a shared memory multiprocessor system, concurrency support is provided by

machine instructions to synchronise the state of a given processor and the shared mem-

ory. These instructions allow the programmer or programming language system to

control the behaviour of the processor with respect to shared memory. This is neces-

sary for the reproducibility of behaviour [77].

In a high-level language it is desirable, even expected, that synchronisation oper-

ations be automatic and that low-level processor details be removed, abstracted, from

the concerns of the programmer. Thus programming language and runtime system im-

plementers must use these operations to ensure consistent high-level behaviour. It is

worth noting that despite the desirability of high-level behaviour, data-oriented concur-

rency in programming languages often unavoidably exposes low-level synchronisation

details to the programmer [168, 20]. This is through either incomplete specification of

high-level behaviour or the complexity of ensuring desirable high-level behaviours in

the data-oriented paradigm (2.7).

Synchronisation instructions can be divided into two categories:

• Barriers, which enforce the order of operations on shared memory,

• Atomic operations, which modify shared memory in a consistent manner irre-

spective of concurrent reads and writes.

A barrier instruction prevents reads or writes to memory being reordered past the

barrier. This controls the pipelining and superscalar behaviour of modern processors.

Additionally the barrier may synchronise the state of cache in the processor with main

memory.

On x86 barriers are provided by mfence (memory fence), lfence (load fence) and

sfence (store fence) instructions [143]. Cached data can also be invalidated with a clflush

(cache-line flush) instruction which forces a specific cache-line to be written back to

main memory if it has been modified. On Power sync and lwsync (light-weight sync)

instructions synchronise processor state and order with shared memory [145]. On ARM
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dmb (data memory barrier) and dsb (data synchronisation barrier) instructions flush

processor pipelines synchronising the order of instructions and the order of memory

operations visible by other processors [36].

An atomic operation allows one processor to exclusively modify a memory loca-

tion or alternatively detect if concurrent access has occurred on a location. Histori-

cally x86 supported a hardware connection (shared wire) to lock all shared memory

for exclusive access. This meant that most single instructions could be made atomic by

prefixing them with a lock operation. While exclusive access to memory is no longer

managed with a hardware connection, reducing contention, x86 still supports the same

set of atomic memory operations. This includes instructions which read and modify

the memory in the same instruction, for example inc (increment) can be used with a lock

prefix to atomically increase the value of a memory location by one. The most widely

used atomic sequence is a cmpxchg (compare and exchange) instruction. This tests the

value of a memory location M against a value X, if M has the value of X, then M is set

to a new value Y. In the event that M is not X then M is not modified. In either case the

success or failure is recorded and can be used later. This is known widely as compare

and swap or CAS.

CAS can be used to implement other atomic operations. For example increment

can be achieved by reading a memory location, then applying CAS with the value and

the incremented value. If the CAS operation fails then all steps must be repeated until

the CAS succeeds. Critically it can take an unbounded number of attempts to achieve

success due to the unpredictable nature of the interfaces between processors.

Power and ARM use an alternate mechanism to CAS. A load-linked (Power) or load-

exclusive (ARM) instruction loads a value from memory and records a reservation for

that memory location. After an arbitrary sequence of instructions a store-conditional

(Power) or store-exclusive (ARM) instruction is used to write to the same memory loca-

tion. If the reservation is still valid these instructions succeed and update memory, oth-

erwise if another processor has modified the memory then the reservation is no longer

valid and memory is not changed. This mechanism is referred to as LL/SC. Broadly
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Year Architecture HW CPU HW Memory LW CPU LW Memory
2005 IBM POWER4 57.20 15.26 9.20 2.45
2006 Intel Core 2.96 1.06 2.57 0.92
2009 Intel Nehalem 8.26 3.88 1.57 0.74
2011 Intel Sandybridge 10.17 3.99 1.67 0.65
2011 AMD Bulldozer 21.82 13.85 21.80 13.84

Table 1: Cost of memory barrier operations in CPU and memory bus clock cycles on
recent processor architectures. HW means heavy-weight barrier, LW means a light-
weight barrier.

Year Architecture CPU Memory
2002 Intel NetBurst 144.24 15.99
2006 Intel Core 43.92 12.21
2009 Intel Nehalem 16.34 7.68
2011 Intel Sandybridge 19.04 7.46
2011 AMD Bulldozer 49.98 31.73

Table 2: Cost of compare and swap (CAS) operations in cycles on recent processor archi-
tectures in CPU and memory bus clock cycles.

speaking LL/SC has more expressive power than CAS [128], in particular LL/SC can

detect when a value has been changed but holds the same value after changes, whereas

a CAS will always succeed if the memory matches the comparison value.

Synchronisation operations have a performance penalty as they partially or fully

negate buffer and cache effects forcing the processor to operate at the speed of (shared)

memory. Interaction between processors may be required, which will occur at the speed

of their respective interconnects. Table 1 shows the cost of barrier operations on recent

processor architectures. Results are shown for two types of barrier, heavy-weight and

light-weight, on x86 these correspond to mfence and sfence respectively. Heavily su-

perscalar architectures such as Power suffer a significant performance penalty from

barriers. This is seen in IBM POWER4 data and successive generations of Intel proces-

sors. Light-weight barriers suffer a much lower performance penalty and it is clear that

Intel is optimising their performance on successive processor generations, while AMD

clearly does not support light-weight barriers. In general light-weight barriers should

be sufficient for most algorithms [169].
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Table 2 shows the cost of CAS operations on recent processor architectures. Over

successive generations the cost of CAS has decreased irrespective of processor and

memory speed increases. The inconsistent result is again AMD’s x86 architecture, this

may be because it supports significantly more processor cores (64 in the generation

tested) and synchronisation on an architecture of this scale is prohibitive. It is worth

noting that CAS operations contain an implicit barrier. If used correctly this means

there is no need to pay twice for synchronisation in a total store order system.

2.6.1.1 Measurement Methodology

The values in table 1 were computed by reading or writing ascending words of memory

interleaved with the associated barrier instruction. This is done for 224 machine words

and repeated 20 times. The mean execution time is computed from the time taken for

the above steps. A second test run taken at a later time is used to validate the first

result. The result is then normalised by the processor and memory clock frequency of

the specific test hardware. For table 2 the same methodology is used; however, in place

of read, write and barrier instructions a sequence of LOCK and CMPXCHG is used.

2.6.2 Interconnects

The alternative to a shared memory multiprocessor computer architecture is a dis-

tributed memory architecture with explicit inter-processor communication. Each pro-

cessor has its own local memory and connections to the rest of the system. Because

remote memory has different performance characteristics to local memory (local mem-

ory is faster), distributed memory architectures are have what is known as non-uniform

memory access (NUMA). Figure 13 shows an example NUMA architecture.

Components on different processors interact by communication over the computer

system’s internal network. The processor can mediate access to its local memory so

as to share it with the rest of the system providing the impression of a global shared

memory equivalent in size to the sum of all local memories. This is the architecture
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Figure 13: Overview of a non-uniform memory access (NUMA) multiprocessor archi-
tecture. Processors have local memory which is faster to access than remote memory.

partitioned global address space languages are designed to program (2.2.1.3). Such an

architecture is used by most modern super-computers [121].

While general purpose networking technology can be used to interconnect compo-

nents of a distributed computer system, such technologies are not designed for low-

latency or fine-grain communication [207]. Thus special-purpose networks are used to

directly connect computer processors together. Recent examples include Cray’s Gem-

ini interconnect [84] and Fujitsu’s Tofu Interconnect [26]. Over the last 30 years the

main activity of super-computer vendors has been to build interconnects for existing

processors. This methodology has influenced processor design and modern proces-

sors integrate their own interconnect technology, such as Intel’s QuickPath [141] or

AMD’s HyperTransport [80]. Thus while modern multiprocessor systems present a

shared memory interface, they are in fact based on distributed memory architectures

underpinned by message passing interconnects. Such a design is necessary as a sin-

gle shared memory creates a point of contention, the performance of which degrades

rapidly as the number of processors increases [118]. A side-effect of this distributed

shared memory is that while globally accessible, different locations in memory have

different performance characteristics [167].
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It is worth noting that the one of the first processors to incorporate an intercon-

nect technology designed explicitly for interprocessor communication was the INMOS

Transputer [53]. The Transputer had four communication links which could allowed

it to be inter-connected in grids and other complex configurations [176]. The process-

oriented occam programming language (2.5.21) to which the technical work of thesis

relates was designed primarily for the Transputer [172].

2.7 Analysis

This section discusses, connects and expands on trends emerging from previous sec-

tions, in particular sections 2.5 and 2.6. The goal is to understand the driving forces be-

hind the development and use of programming languages, and relate these to process-

oriented programming.

Despite previously identified issues (2.2.1) a data-oriented style of concurrent pro-

gramming is popular. Given the post hoc incorporation of concurrent programming

features into popular languages, we can postulate that it is the languages that are pop-

ular rather than the data-oriented paradigm. Data-oriented concurrency is used as it

provides a method of extending existing software with concurrency support. Thus by

understanding why programming languages are popular and the driving forces be-

hind programming language development it is possible to establish the relevance of a

process-oriented style to current trends in computer systems.

2.7.1 Popularity

In the previous section “Concurrency Support in Programming Languages” (2.5) it can

be observed that the top five most popular programming languages have at most a min-

imal concurrency model. With perhaps the exception of Objective-C’s event-driven UI

model the concurrency support in these languages has been added recently (in compar-

ison to when they were released). Additionally the programming style for concurrency
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Language TIOBE Ohloh langpop Mean
C 1 2 1 1
Java 2 1 2 2
C++ 4 3 3 3
PHP 6 6 4 5
Python 8 4 6 6
C# 5 8 7 7
JavaScript 10 5 5 7
Perl 9 9 8 9
Objective-C 3 10 15 9
Ruby 11 7 10 9
Visual Basic 7 11 12 10

Table 3: Languages ranked by popularity.

in these languages is predominately data-oriented (2.2.1), with few if any features to

help prevent data-oriented programming hazards.

The TIOBE Index is the primary source of language popularity data used in this the-

sis [246]. It is derived from a mature and relatively stable collection method involving

internet search engines and numbers of engineers, vendors and third-parties working

with a given language. Table 3 shows a ranking of popular programming languages.

Relative rankings for the top 11 languages from the TIOBE Index January 2013 were

sampled from two other sources, Ohloh Monthly Commits [11] and langpop.com [8].

Ohloh tracks open source projects and their activity, and langpop.com tracks search

engine results. These samples were combined with the TIOBE Index to derive a mean

ranking for validation of the TIOBE Index itself. The results show the TIOBE Index to

be broadly consistent with the mean rank, although a few anomalies are present. Fewer

open source projects use Objective-C and Visual Basic. This explains the discrepancy

between their TIOBE rank and other ranks. Additionally Objective-C’s popularity is

relatively recent (2.5.20) and langpop.com’s data sources may be outdated. Conversely

JavaScript is heavily used in open source projects causing a divergence between the

mean and TIOBE rank.

Figure 14 shows the inter-relationship of the top 11 languages from the TIOBE In-

dex. What is clear from this diagram is that all of the top five languages are one family,
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C and its decendants. From this it can be suggested that the concurrency model of the

top five is an consequence of their heritage. Another observation is that all of these top

five languages and the majority in the top 11 are industry led developments.
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Figure 14: Language popularity and heritage, the relationships between popular pro-
gramming languages.

This raises a general question; what makes a programming language popular? And,

more specifically: why are C and C-family languages as popular as they are?

2.7.2 The Popularity of C

Popularity data suggests that C is not only the most popular language now, but that

it has been for the last 20 years. There are two core features of C which gave it initial

popularity:

• Efficiency, C converts directly to machine code and requires almost no runtime
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system. This means that C can be reasoned about and optimised with reference

to a hardware model.

• Portability, the language and (optional) support libraries are relatively small. This

means the development effort to produce a C compiler for a new platform is low.

These features contrast with other programming languages in the 1970s and 1980s

which provided good abstraction from hardware concerns but required complex com-

pilers and runtime systems, reducing their efficiency and portability. Both of these

features are very intentional. In the late 1960s it was unclear whether any third gen-

eration programming language would be efficient enough to implement an operating

system [208]. C was designed to implement the Unix operating system so had to be

efficient, and it also had to be portable if Unix was to be made available on the vast

range of computer systems available at the time.

A third reason has given C its enduring popularity: ubiquity. This can be attributed

in part to the popularity of Unix. C provided the standard programmer interface to op-

erating system functions. With the widespread adoption of Unix and Unix-like operat-

ing systems most programmers needed to have some understanding of C. Additionally,

the market desire for Unix reinforced the concept that new computer systems should

be released with a C compiler if they were to be of value [31]. In time programmers

came to rely on the existence of a C compiler for any computer and operating system.

Programmers building portable software, software designed to run on a range of com-

puters, used C. This creates a cycle, as adding support for C allows (in principle) a large

range of existing software to be used. The root of C’s efficiency is mechanical sympathy,

its programming model and the hardware model of computers are closely aligned (or

were historically).

For the top 11 languages previously identified, each trades execution efficiency or

cost of implementation (portability) for increased expression. For example, Java trades

efficiency for a virtual machine with advanced optimisations such as just-in-time com-

pilation. Combined with a large standard library this increases the portability of Java
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programs, which is reinforced by hiding machine details. Java has weak mechanical

sympathy, but makes up for it with portability.

It is accurate to say that the designers and programmers of the first electronic com-

puters were either one and the same or part of the same closely knit team. Software and

hardware are largely indivisible. This trend continues with the first commodity com-

puters sold by large equipment vendors such as IBM in the early 1960s. These early

computers would be supplied with an assembler or perhaps a FORTRAN compiler. A

team of programmers would then be hired to operate and program the computer to the

bespoke needs of the purchaser. The term software begins to emerge in the mid-1960s

and by 1969 software is a commodity with IBM charging separately for the software it

supplies [208].

In the 1970s, while the software is becoming a separate commodity from hardware,

hardware vendors continue to be the main developers of software. To the hardware

industry, software is a means to sell hardware. For the majority of customers the hard-

ware is only as good as the software it runs.

The introduction of microcomputers through the late 1970s and 1980s brings an in-

creased need for software. Well-known software industry giants such as Microsoft and

Oracle are founded. These companies provided software without being hardware ven-

dors. This causes a separation of concerns. Figure 15 expands heavily on figures shown

in section 2.1. The programmer, programming system designer and computer system

designer are now separate entities. Each has their own separate and distinct view of how

the computer works. The programmer uses a programming language which has an em-

bedded programming model. The programming model will, to varying degrees, embed a

hardware model based on the designer’s understanding of specific or generic hardware.

Critically the programmer also has their own hardware model which they have gained

from experience of the programming language, education and other sources. Finally

the hardware designer uses observations of programs and programming models to im-

prove existing hardware or develop new hardware.
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Figure 15: Overview of abstraction from problem domain to computer system high-
lighting that separate parties involved can have independent models of both the com-
puter and programming systems.

Mechanical sympathy is the congruence of these separate models. Importantly this

is not simply equivalence, but rather harmony. For example while a modern computer

with a superscalar processor does not execute instructions in the sequence specified,

its execution model is in agreement with the common hardware model used by pro-

gramming language compilers. This shared understanding helps achieve optimal per-

formance. If the models are not in agreement and the programming language does

something not in keeping with common understand or the processor does not perform

well for a common behaviour then this discord can reduce performance.

C’s major flaw is that it sacrifices high-level expression to achieve mechanical sym-

pathy. This obscures the problem model and increases program complexity (see 2.1.1).
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2.7.3 Trends in Academia

In this context it is of value to analyse trends in academic research regarding computer

science and more specifically programming languages. Figures 16, 17 and 18 show

percentages of academic papers mentioning particular topics. Data is taken from all

publications of ACM SIGPLAN Notices between 1970 and 2012 [1], 7739 papers in to-

tal. Aggregating a number of conferences and journals, ACM SIGPLAN Notices gives

a good overview of software related issues in computer science research. Keywords were

assigned to papers based on their existing bibliographic keywords and title text. Each

figure shows the percentage of publications in a given year which mentioned a partic-

ular topic (composed of multiple keywords).

Figure 16 shows the rise and fall of interest in particular programming languages.

The academic community appears to pick a new language every five to ten years. In

recent times the peak in interest in a given language occurs about five to ten years

after its release, although this has not always been true. Interest in FORTRAN rises up

to a peak in 1977, the year FORTRAN-77 is released. A reason for the associated rise

in ALGOL references is not clear. Ada peaks in the year of its release 1980. Smalltalk

peaks in 1986 about five years after the release of Smalltalk-80, the first version available

outside Xerox PARC. Interest in C family languages (by name) rises from the late 1970s

(C was released in 1973) to a peak in 1992, nine years after the release of C++. This

interest is maintained until the rise of Java approximately five year’s after its release.

Interest in Java has now declined, leaving room for a new hot language or topic.

Figure 17 shows interest in three main programming styles: objected-oriented, func-

tional and logic programming. The spike in interest in object-oriented programming in

1986 coincides with the first OOPSLA (Object-Oriented Programming, Systems, Lan-

guages & Applications) workshop on the topic. Within this figure languages such

as Java and C++ are added to the count of objective-oriented papers, and functional

and logic programming languages like Haskell and Prolog are aggregated into their

respective topics. The purpose of this figure is to show that there is a steady increase

in interest in alternatives paradigms, functional and logic programming, and a trend
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Figure 16: Percentage per year of ACM SIGPLAN Notice papers relating to particular
programming languages.

away from object-oriented programming research. This contrasts with the TIOBE In-

dex which shows interest in functional and logic programming falling year on year,

with their present popularity levels approximately one third of their academic publica-

tion levels [246].

Figure 18 shows publications related to concurrency. Topics are separated into par-

allelism, concurrency, and multiprocessor related keywords. Related topics such as

atomicity, scheduling, monitors, and semaphores are aggregated separately. Note that

double counting is possible, this accounts for the common oscillations. The 1988 spike

coincides with one of the first supercomputing conferences, SC88. From 2004, the year
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Figure 17: Percentage per year of ACM SIGPLAN Notice papers relating to particular
programming paradigms.

of release of Intel’s first dual-core processor there has been a gradual increase in concur-

rency and related topics publications. The noticeable jump in parallelism publications

from 2007-2008 coincides with Nvidia’s release of CUDA, its GPGPU programming

language (2.5.14), although it appears there has been an ongoing interest in parallelism,

probably buoyed by the supercomputing community. The key observation here is that

academia is adopting hardware advances quicker than language changes.

From these figures it can be concluded that academia mirrors rather than sets trends.

It is the commercial hardware and to a lesser extent software industry that defines di-

rection. Academia is increasingly focused on alternative forms of expression. These

forms of expression while powerful more often than not neglect mechanical sympathy.
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2.7.4 Industrial Influence

Like any commercial enterprise the hardware and software industry has a clear goal in

maintaining profitability through sales to existing and new customers. This is accom-

plished by creating new products which are in some way faster, more efficient to run,

cheaper or have new and novel features. From a consumer standpoint the key metrics

are performance and price. These ultimately drive the market, the hardware and software

industry. For example, major rivals Intel and AMD can be typified as, Intel competes

on speed while AMD competes on price.

Ultimately the shift to multicore and manycore is driven by the marketability of
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such performance. Performance which is consumed by “advances” in software engi-

neering. “The hope is that the progress in hardware will cure all software ills. However, a

critical observer may observe that software manages to outgrow hardware in size and sluggish-

ness.” [210].

It has been observed that software increases in complexity and reduces in efficiency

as hardware becomes faster [264]. This is probably not a conscious behaviour, rather

given increased resources there is less need to concern oneself with managing them,

and overall use increases and efficiency drops. While concerning, this pattern creates

a healthy ecosystems between commercial software and hardware industries. One cre-

ates performance, while the other consumes it, meanwhile the consumer buys more

products to maintain ground.

2.7.5 Summary

The design goal of any programming language and its model is to allow the clear and

accurate expression of problems in a form that they can be solved computationally8.

Ideally the programmer should be unburdened by concerns of the computation or hard-

ware model to allow for clarity of expression of the problem domain. Historically it

has been difficult to remove hardware concerns from the programming model without

harming its computability [43].

Programming models that eschew a hardware model, such as functional and logic

programming, are unpopular in the main (2.7.3) [246]. This unpopularity is probably

due to the mismatch between ingrained models of computation (from imperative lan-

guages) and the forms of expression embodied by these styles of programming. This

results in a perception of inefficiency or poor expressibility leading to increased devel-

opment time and lower performance. Inefficiency is a real concern when the program-

ming model eschews hardware concerns. As the transformation from programming

language to machine operations becomes more complex and less direct, the harder it is

8With the obvious exception of esoteric programming languages such as Brainfuck, Shakespeare or
Whitespace.
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for the programmer to reason about how their choice of program statements will be ex-

ecuted by the computer. This is important for achieving performance either by design

or by optimisation [152].

An important function of the programming model embedded in a given program-

ming language is to guide the programmer into expressing the problem or its solution

in a manner which can be computed efficiently by a real computer. That is to say the

programming language, paradigm and model should have mechanical sympathy with

the computer. A key argument of this thesis is that process-oriented programming has

a high degree of mechanical sympathy with modern computer systems.

When using the process-oriented programming model, the programmer is free to

use concurrency for program structure. This intentional and explicit concurrency aids

reasoning by the programmer, and is directly accessible by the runtime system. In

other words the programming language and runtime system do not need to extract

concurrency in a safe manner from implicit dependencies, as it has direct access to the

programmers intentions.

Isolation between processes is an accurate abstraction for distributed and non-uniform

memory architectures (2.6). Or rather, even if access to all memory is possible from all

parts of the computer system it will have performance implications. Process-oriented

programming makes these implications obvious to the programmer as the movement

of data between points in the system must occur as explicit communication between

processes. This allows the programmer to consider the optimisation step of explicitly

reducing the amount of communication, or otherwise restructuring communication.

From the runtime system perspective, monitoring access to memory so as to manage

implicitly shared resources is computationally expensive to an extent which mitigates

its value [148]. However, as the connections between processes in a process-oriented

system are explicit these can be used as a source of optimisation (see section 3.4). Where

shared memory is available this can be used to efficiently enable communication be-

tween processes (see chapter 3).

The current trends in computer hardware are toward distributed memory, many
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processors and asymmetric multiprocessor architectures (2.6). Modern asymmetric

multiprocessor systems, often called heterogeneous multicore or manycore systems, com-

bine processors with different operating characteristics. The most common example

of such systems is a general purpose processor (CPU) coupled with a special purpose

graphics processor (GPU). The CPU is efficient when running a sequence of instruc-

tions processing a single stream of data and making decisions, the GPU is designed to

perform the same sequence of operations on many pieces of data at the same time with

few decisions. The mainstream is to address these trends as an optimisation. The pro-

gramming model is maintained as a single sequential program with a single memory,

work is then offloaded to other processors as an explicit optimisation (2.5.16, 2.5.14).

Whereas process-oriented programming addresses these by explicit program design

(2.4). The gap between single program shared memory models and hardware architec-

tures is only likely to widen. While there is no magic bullet [78], process-oriented pro-

gramming will maintain mechanical sympathy, as message-passing techniques such

as PVM (2.5.23) and MPI (2.5.19) have done in the supercomputer arena for last 20

years [16, 21].



Chapter 3

Scheduling

This chapter describes an efficient scheduler for process-oriented programs written in

occam-pi. The occam-pi programming language runtime system is redesigned to en-

able parallel execution of occam-pi code on modern multi-core computer hardware.

The aim of this engineering work is to evaluate the mechanical sympathy of process-

oriented software on multi-core computer systems and address the key research ques-

tion of this thesis: can software written using a process-oriented style of programming

be executed efficiently on modern multi-core computer systems using available hard-

ware parallelism?

Content from this chapter has been previously published as [218] and [220].

3.1 occam

As previously noted the occam programming language was designed for developing

programs for the Transputer processor (see section 2.5.21). The Transputer embedded a

process scheduler, which facilitated the concurrent use of internal and external commu-

nication channels. This can in a sense be seen as a form of hardware software co-design,

as processor and language are interdependent.

128
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-- sequential block

SEQ

x := x + 1

y := y + 1

-- parallel block

PAR

x := x + 1

y := y + 1

Figure 19: Statement level concurrency in occam.

The occam language supports statement level concurrency as shown in figure 19. In

the first section a SEQ keyword is used indicating that the values of the variables x and y

should be computed and assigned in sequence. In the second section the PAR keyword

indicates that the same two computations should be executed in parallel. The occam

compiler converts these statements into Transputer instructions without making any

attempt to optimise granularity. Hence in the example given the PAR will cause the pro-

cessor to create two processes. This fine-grain concurrency means that occam processes

should be lightweight so as to require a minimal amount of memory and processor time

to manage. The Transputer could switch between processes in tens of clock cycles and

required only four words of memory per process of management overhead.

The occam compiler disallows memory accesses that would be non-deterministic or

unsafe in the presence of concurrency. This means that data which is shared between

concurrent processes is read-only, and cannot be used to communicate. Communica-

tion between processes is performed through channels. The Transputer allowed any

memory word to be used as a synchronous channel, with input and output. Figure 20

shows occam’s channel syntax; the concurrent read and write of the channel c will syn-

chronise transferring the value 42 via the channel to the variable x. Significantly these

channels could be mapped to external communication links on the Transputer which

could be connected to other processors or devices.

The occam compiler computes the memory usage of programs at compile time. This

a priori memory allocation removes the need for runtime memory management, the

behaviour of which is non-deterministic. This static analysis guarantees that a program
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CHAN OF INT c:

INT x:

PAR

c ! 42 -- write channel

c ? x -- read channel

Figure 20: Channel syntax in occam.

will never run out of memory during execution. However to enable this the maximum

number of processes and the sizes of their associated workspaces must be a compile

time constant.

In the 1990s the occam toolchain developed by INMOS and later SGS-THOMSON

was adapted to produce executable code for a range of computer systems as part of

the occam-for-all project [261, 204]. Two approaches were investigated: modification

of the compiler to generate machine code from occam [204] and conversion of occam

compiled as Transputer instructions to machine code [261]. Due to difficulties in modi-

fying the monolithic occam compiler the latter of these approaches formed the basis for

the Kent Retargetable occam Compiler, KRoC [191]. As no other computer processor

provides the Transputer’s process and channel instructions these are supported by a

runtime system called CCSP (C Communicating Sequential Processes).

3.2 occam-pi

The occam-pi language significantly extends occam by enabling features which require

runtime memory management [48, 257]. Using runtime memory allocation, limitations

on the numbers of processes and their respective sizes are removed or eased. Although

the compiler must still be able to compute the size of a process’s workspace (stack) at

compile time1, objects with dynamic sizes which are only known at runtime can be

allocated on the heap.

1This does not preclude recursion as a new stack, with a size determinable at compile time, can be
allocated from the heap for each level of recursion [48].
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Major language additions in occam-pi are mobile memory and channels. A mobile

piece of data is not copied when it is sent over a channel, rather the reference to it is

transferred to the receiver and lost from the sender. If the size of the mobile data is

known at compile time it is possible for both the sender and receiver to have mem-

ory of the appropriate size allocated such that communication is implemented as the

swapping of references. With this scheme the memory requirements of the program

can still be computed at compile time just as in standard occam, and NULL references

are not possible [48]. However if the size of an allocation is only known at runtime, or

dynamic allocation is otherwise desired, then mobile data is allocated from the heap.

Mobile channels allow the dynamic reconnection of processes. When one end of a

channel is sent over another channel, the sender loses the reference and the receiver

gains it. This maintains the invariant that there are only two references to a channel at

any given moment, one for reading and one for writing.

There are circumstances where it is desirable to share the end of a channel, for ex-

ample multiplexing multiple senders. To support this occam-pi adds shared channels

to which there can be any number of references. Before a shared channel end can be

used for communication it must be explicitly claimed, which establishes the invariant

that there is at most one reader and one writer at any given time.

Barriers have also been added in occam-pi and these can also be mobile [255]. Signif-

icantly when a mobile barrier is communicated its reference is not lost from the sender.

Additionally the receiver is automatically enrolled on the barrier. This maintains syn-

chronisation between sender, receiver and barrier phases.

3.3 Prior Work

Work presented here is not the first multiprocessor implementation of a runtime sys-

tem for occam. Kevin Vella developed a multiprocessor runtime for symmetric multi-

processor computers [250]. In his work Vella identifies two major issues affecting multi-

processor implementations of lightweight processes such as those required for occam:
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• Shared-memory contention between processors accessing a shared run-queue of

processes. A common scheduler design uses a single queue of processes ready

to execute. Processes are taken from the front of the queue, run for some period

of time, then placed on the back of the queue. Multiprocessor support is added

by allowing multiple processors to add and remove processes from this shared

queue. This shared queue is very effective in keeping all processors fed with

work. However safe modification of the shared queue increases cost due to lock-

ing and atomic operations, and if used frequently can have other performance

implications such as cache-line contention (2.6).

• Reduced cache efficiency when a process is descheduled on one processor and

migrates to another then the benefits of any data it has drawn into one processor’s

cache are reduced. If a process moves rapidly between processors it will gain no

benefit from memory caches, significantly hindering its performance (2.6). This

concern is partially mitigated by the shared L3 cache on modern multicore proces-

sors; however, occam processes have very short dispatch times which exacerbates

the problem compared to more coarse-grained threads.

Vella proposed and implemented batching as a solution to both of these concerns.

A batch is a group of processes which are executed and migrated together. By grouping

processes together the granularity of operations on the shared run-queue is coarsened.

Each batch is dispatched a number of times before being returned to the shared run-

queue. If the number of times a batch is dispatched is greater than the size of the

batch, then all processes in the batch will be dispatched, potentially multiple times.

This allows the batch to build up and then benefit from a cache footprint.

Vella’s design and implementation has a number of limitations which this work

seeks to address.

• The work predates occam-pi and hence does not address dynamic processes,

channels or barriers. Additionally the design does not incorporate more recent

work by Moores and Barnes on priority [191, 48].
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• The implementation only addresses SPARC and DEC Alpha processors. Today’s

commonly available multiprocessor processors are based on Intel x86 instruction

set.

• Batches have a fixed maximum size and the batch of a process is determined at

creation. Although a process can move batches through communication Vella

does not explore this in his design, focussing on benchmarks which involve con-

stant numbers of processes with minimal communication. This may be because

such benchmarks will have the highest potential for linear speed up with respect

to Amdahl’s law [30] as synchronisation is minimised. Critically if the destination

batch is full then a new batch will be created. Eventually batches will become full

of unrelated processes.

• There is data race in Vella’s wait-free communication algorithm with respect to

alternation (choice). This can potentially cause memory corruption and other un-

determined effects. Details of this race are described along with a new alternation

algorithm in section 3.11.

• Process termination in occam requires an implicit barrier between the parent and

child process. This is implemented with a spin lock which presents a potential

synchronisation bottleneck when multiple large numbers of processes terminate

simultaneously. While this bottleneck is unlikely to present performance prob-

lems, it highlights Vella’s focus on fixed networks or processes. Buoyed by dy-

namic support in occam-pi, recent usage involves large dynamic process net-

works [223, 49, 35].
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3.4 Design Goals

The overarching goal of this work is to evaluate the mechanical sympathy of process-

oriented software with modern multi-core hardware by extracting the maximum per-

formance from unmodified occam-pi program code. To achieve this the runtime system

must be as efficient as possible.

3.4.1 Work Stealing

A major limitation of Vella’s work is the shared run-queue. Reviewing performance

numbers from Vella and Barnes, the growing gap between memory speed and proces-

sor speed becomes clear. Vella suggests that for a single processor implementation a

context switch takes 580ns or 35 cycles on a 60MHz SPARC, and 200ns or 47 cycles on

a 233MHz DEC Alpha [250]. Barnes suggests that on an 800Mhz Pentium 3 a context

switch requires 90ns or 72 cycles. Thus with newer hardware processes can be switched

more frequently and will be due to reduced execution times; however, the relative cost

of switching is increasing. Increased frequency of switching with batches or without

batches will increase contention for a shared run-queue. This contention decreases per-

formance linearly with respect to the number of processors contending for the mem-

ory, and worse saturates the memory bus with synchronisation traffic which reduces

the performance of processors not contending [118]. This is a reflection of Amdahl’s

law [30].

The point of contention can be removed by using separate run-queues for each pro-

cessor. The complexity envisaged by Vella is that work must be balanced between these

queues. A potential solution is work stealing [57, 59]. In a work stealing scheduler pro-

cessors which become idle (empty their run-queue) steal work from the run-queues of

other processors to keep themselves busy.

Research on work stealing has been heavily focused on directed acyclic graphs

(DAGs). The Cilk programming language and its associated work stealing scheduler

are a prime example of this [58, 57]. Commonly in a DAG a given node or task cannot
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complete until its dependencies have completed. These dependencies can be located

by following the edges of the graph. By enumerating dependencies a scheduling order

can be derived: at each node its dependencies are pushed on to a stack. Tasks can then

be executed in an appropriate order by removing nodes from the top of the stack. In

practice this stack can be built at runtime as a program executes and is always used

last-in first-out (LIFO). A LIFO stack can be implemented using wait-free O(1) algo-

rithms [127]. For work-stealing the LIFO is extended to a double-ended queue where

work is stolen from the bottom (or end) of the queue which is otherwise used in a LIFO

manner. Such a queue can also be constructed in a wait-free manner [126]. These prop-

erties make DAGs amenable to wait-free work stealing. In particular there is no need

to regularly dispatch all concurrent components in a first-in first-out (FIFO) manner as

is required for general purpose process-oriented models such as that used in occam-

pi. This allows for the use of a double-ended queue where the cost of work-stealing is

taken only on one end of the queue.

A lock-free algorithm is one which does not require a lock to be taken before a pro-

cess or processor enters the algorithm, i.e. the algorithm is not mutually exclusive and

can be executed simultaneously by multiple processes or processors [249]. Common

definitions of lock-freedom associate it with a guarantee of system-wide progress such

that at least one process or processor is guaranteed to make progress executing the al-

gorithm [126]. Where multiple processes or processors may be executing the algorithm

simultaneously, but system-wide progress cannot be guaranteed then the algorithm is

referred to as non-blocking [126]. A wait-free algorithm is a lock-free algorithm where any

process or processor can complete the algorithm in a finite number of steps, regardless

of the execution speeds of any other processes or processors operations, i.e. no opera-

tion can starve another [127]. Thus wait-free algorithms offer the strongest guarantees

of progress and non-blocking algorithms offer no guarantees. These guarantees refer to

the worst-case performance of the algorithms. Performance in the common case may

often be improved by relaxing guarantees [40].

Process-oriented programs and more specifically occam programs are not acyclic
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graphs. A process network is in fact a directed multigraph, with the additional property

that processes can execute indefinitely. This contrasts with most DAG systems such as

Cilk where a task will complete in finite time should its dependent tasks complete. For

occam programs a first-in first-out (FIFO) queue represents the ideal scheduling case.

Assuming that processes yield to the scheduler in finite time, this guarantees that all

processes will get executed at some point.

Vella considered wait-free algorithms for the shared run-queue in his design, but de-

cided against them due to increased complexity and the lack of CAS or LL/SC (2.6.1) on

SPARC v8. The performance of non-blocking algorithms is robust (does not degrade)

in systems with multiple processors [182]. Non-blocking FIFO queue algorithms are

lock-free or non-blocking, but not wait-free [249, 181]. Although wait-free queues have

recently been developed, non-blocking variants have better performance due to lower

numbers of atomic operations [153].

While general purpose wait-free algorithms may not be efficient [40], there are cer-

tain constraints that can be used when designing an algorithm for a work stealing

scheduler. The most beneficial aspect of work-stealing is bias. The scheduler steal-

ing work is otherwise idle and hence can afford to spend more time acquiring work,

whereas a scheduler operating on available local work should be suffer minimal inter-

ference. Hence algorithms should be biased toward the scheduler operating locally, the

common case in a loaded system. Additionally unlike a fully shared run-queue, only

one scheduler will ever add work to any given queue. This gives three distinct opera-

tions for the run-queue: local enqueue, local dequeue and remote dequeue. Local operations

occur frequently and must be cheap, remote operations are infrequent and can be more

expensive. All operations should have defined upper bounds on numbers of operations

to complete.
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3.4.2 Working Set Batches

Batches provide a effective mechanism for improving the cache utilisation of light-

weight processes such as those found in occam-pi [250, 88]. With a work stealing sched-

uler a run-queue of batches continues to have the benefit of reducing potentially costly

enqueue and dequeue operations. A difference is that batches will only migrate when

the system is unbalanced and has capacity rather as a side effect of passing through

the run-queue as is the case with a shared run-queue. This means finer-grain smaller

batches can be considered without negatively impacting performance. Vella’s design

gives little consideration to the make up of batches. Therefore this is an obvious area

for refinement.

Within a process network a given process communicates with only a subset of pro-

cesses as defined by the channels to which it is connected. Its immediate peers represent

the processes with which it engages in communication and hence synchronisation. If

these synchronisations can occur on the same processor then cache ping-pong effects

can be avoided. Hence it is desirable for frequently communicating processes to be

scheduled together on the same processor.

This observation holds true for dynamic networks such as the very large process

networks used in complex modelling simulations exemplified by those produced by

the CoSMoS project [3, 35, 222]. Typically agent processes move by reconnecting chan-

nels between themselves and different space processes. In any given simulation step

a number of agent processes will be communicating with a single space process. This

represents a snapshot working set.

Static analysis would not be useful for these dynamic networks, as only runtime

measures can determine the connectivity of a given process. Tracking which channels

a process has access to is possible; however, the associated data structures would be

inefficient to maintain and use. Therefore monitoring which channels a given process

communicates on seems the most appropriate option for determining working sets.

Communication between processes should draw them in to the same batch. Note that
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Figure 21: KRoC toolchain structure.

to accomplish this there should be no maximum batch size. Counter to the above, pro-

cesses that do not communicate should eventually end up in separate batches. These

two pressures should be embodied in the scheduler behaviour so as to produce batches

which contain distinct working sets and adapt to changing process network topologies.

3.5 KRoC

This works builds on the KRoC toolchain as of 2007 [204, 261, 191, 48]. The toolchain

structure can be seen in figure 21. KRoC is composed following components:

• occ21, a modified version of the INMOS/SGS-THOMSON occam compiler. This

takes occam or occam-pi as input and produces Extended Transputer Code (ETC)

as output [205]. ETC is an intermediate representation holding Transputer in-

structions in a binary form, but retaining symbolic links and other information

necessary or useful for producing an assembled executable.

• tranx86, which translates ETC into Intel x86 assembly language [47]. A conversion

between the 3-place stack machine architecture of the Transputer and the register

architecture of x86 is performed. This does not produce machine code; this task is

delegated to a system compiler and linker such as GCC [5].
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• CCSP, the runtime kernel which supports channel communication and task schedul-

ing [191].

• libkrocif, a library providing bootstrap and support functionality for occam-pi

programs, for example terminal input and screen output.

There are some subtle details of the toolchain which must be addressed in order

to add multiprocessor support. The majority of these are associated with occam-pi

features and the means by which they have been added.

In adding features to occam to create occam-pi Barnes took the approach of min-

imising additions to the runtime scheduler and virtual instruction set [48]. Essentially

only three groups of new virtual instructions were added:

• Heap allocation instructions to support mobiles such as MALLOC (memory allocate)

and MRELEASE (memory release).

• Mobile communications such as MIN (mobile input) and MOUT (mobile output).

• Semaphore operations to support shared channels, SEMINIT (semaphore initialise),

SEMCLAIM (semaphore claim) and SEMRELEASE (semaphore release).

• Barrier operations to support static and mobile barriers such as BARINIT, BARSYNC.

Semaphore operations are converted by tranx86 into machine instructions. Details

of the semaphore’s waiting queue are managed outside of the runtime scheduler, with

more generic RUNP (run process) and OCCSCHEDULER (invoke scheduler) instructions used

to start and stop processes on the queue. A similar approach is applied to barrier oper-

ations. These conversions abstract details from the runtime scheduler and weaken the

knowledge the scheduler has of a program’s intentions. Additionally it is not possible

to change details of process descriptors without modifying tranx86 or occ21 both of

which manipulate these directly.

While the runtime scheduler is aware of the movement of mobile types by channels

through MIN and MOUT instructions it is unaware of the contents of the mobile. This is
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significant for mobile channel ends which must be reference counted in order to prevent

memory leaks. The location of the reference count is determined by code in occ21 and

operations to modify the count inlined. These operations will not be safe (unless made

atomic) in a multiprocessor environment. Similarly mobile barriers must enroll the

receiver atomically when communicated via a channel.

Essentially the runtime application program interface (API) between generated code

and the runtime kernel (CCSP) is weakened as knowledge of runtime structures and

memory management is embedded in both occ21 and tranx86. This prevents modi-

fication of runtime details without modification of all parts of the toolchain. Thus to

support work on the runtime scheduler the API was strengthened to remove runtime

and scheduling details from occ21 and tranx86. A new strong API is presented in ap-

pendix A. Modifications were made to occ21 so that all integration with the runtime

is done via this API and tranx86 converts all associated operations to calls to the run-

time scheduler. Additionally an object model is defined in appendix B. This gives the

runtime scheduler and occ21 a common structure for mobile data. Memory manage-

ment details are abstracted from occ21, with occ21 simply requesting particular types

of mobile memory with associated parameters. The runtime is now responsible for

operations such as reference counting.

A further detail to be addressed is identifying the active scheduler. The CCSP run-

time uses static memory to store its run-queues. This must be changed to allow for a

scheduler structure for each processor or OS thread. Having done this it is necessary to

identify the current thread in which the scheduler has been invoked. This can be done

using thread local storage; however, there is a cost associated with resolving the address

of variables held in thread local storage which is incurred each time such a variable

is used [98]. While this cost involves a read from memory and a few address calcula-

tions, it still desirable to avoid this overhead in the critical path. Instead the runtime

was modified to overload the call table, placing the scheduler structure at a fixed offset

from it.
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During compilation tranx86 converts instructions which invoke the runtime sched-

uler into calls through a lookup table. While this call table is not required as kernel calls

can be linked directly [47], it is used to reduce x86 instruction length. The address of the

call table is held in a machine register (’ESI’ on x86) and kernel calls perform an indirect

jump to offsets from this register. By optimising the order of calls in the table, frequent

operations (e.g. channel input or output) can be placed as low offsets. In turn these

indirect jump instructions are smaller than to linked memory addresses. This improve

pipelining and instruction cache efficiency on Intel Pentium 3 and Pentium 4 proces-

sors. This low-level optimisation is unnecessary on more recent processors; however,

by replicating the call table for each processor and placing the associated scheduler data

structure at a fixed offset from this it is possible to resolve the location of the current

thread’s runtime scheduler using a single arithmetic instruction.

3.6 Algorithms and Conventions

All algorithms presented in this chapter assume a total store order memory model

(2.6.1) [254, 199]. Unless otherwise specified all variables are machine words (32 bits

on Intel x86). Low order bit positions for example 0 and 1 refer to bits representing

small magnitude integers such as 20 and 21. Conversely high order bit position repre-

sent high magnitude integers such as 231. The position of the bits within the word bytes

with respect to endianness is not relevant.

Several common operations are used in algorithms:

• load, read – value← *address

Load a value from a memory address.

• load, read – value← address[field]

Load a value from a memory address offset by field words.

• set, store, write – *address← value

Store a value to a memory address.
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• set, store, write – address[field]← value

Store a value to a memory address offset by field words.

• atomically swap – Swap(address, new)

Atomically store the new value at address and return the old value. This can be

implemented by LOCK; XCHG on Intel x86.

• compare and swap – CAS(address, old, new)

Atomically store new value at address if the contents of address is equal to the old

value. The return is true if the exchange happens otherwise false. This can be

implemented by LOCK; CMPXCHG on Intel x86.

• atomically decrement and test – DecrementAndTest(address)

Atomically decrement the value at address and detect if the value is zero. This can

be implemented by LOCK; SUBL followed by SETZ on Intel x86.

• atomically test and set – TestAndSet(address, index)

Atomically set the bit at index of address, returning the old value. This can be

implemented by LOCK; BTSL on Intel x86.

• atomically test and clear – TestAndClear(address, index)

Atomically clear the bit at index of address, returning the old value. This can be

implemented by LOCK; BTRL on Intel x86.

• read barrier – ReadBarrier()

Prevent read pipelining past this point. This is an LFENCE on Intel x86.

• memory barrier – MemoryBarrier()

Flush all memory pipelines. This is a MFENCE on Intel x86.
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Figure 22: Layout of process workspace showing fields of process descriptor and their
associated word offsets.

3.7 Processes

Each process has a process descriptor used to store state when descheduled or perform-

ing certain kernel calls. The descriptor can be allocated statically on the process stack,

or when state does not need to persist across kernel calls it may be allocated dynam-

ically at the point of call. For occam-pi the process descriptor is stored in the process

workspace and the compiler guarantees that the workspace is large enough to hold the

descriptor. The process is hence referenced by its workspace pointer, Wptr. The process

stack is accessible at positive offsets from the Wptr and the process descriptor fields at

negative offsets. Figure 22 shows the layout of the workspace and process descriptor.

The process descriptor fields are used as follows:

• Temp a temporary area used to communicate some information between kernel

calls and the process. This is the only process descriptor field visible to the pro-

cess. In practice it is only used for alternation to indicate which channel is ready.

• Iptr is the address of the instruction to resume at when the process is rescheduled
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or the kernel call finishes.

• Link is a pointer to another process descriptor when the process is on a queue, or

NotProcess_p if it is the end of the queue.

• Priofinity holds the priority and affinity mask of the process. The affinity mask

describes which logical processors a process can execute on. This is useful for

binding processes to parts of the system. An empty mask means the process can

run on any processor; this is equal to a full mask, but the full mask has a special

behaviour as described in 3.8.7.

• Pointer or State holds the data pointer during channel communication or the

alternation state during alternation.

• TLink is a pointer to a timer queue node if the process is waiting or alternating on

a time offset.

• Time_f is the time offset being waited if the process is waiting or alternating on a

time offset.

The value of these fields are preserved by the process between kernel calls; for ex-

ample the process may allocate or deallocate stack overwriting data in these words.

Therefore the state of these fields (with the exception of Iptr) is undefined at the be-

ginning of any kernel call, but can be relied upon as long as the process is held in the

scheduler. The exception to this is alternation where the compiler is disallowed from

allocating or deallocating stack between beginning an alternation and finishing it, as

the process descriptor maintains state between kernel calls. This means that operations

that occur between ALT and ALTEND can rely on the value of these fields.

Assuming a process must have at least one word of data; these fields mean the

minimum size a process workspace is 8 words (32 bytes on a 32-bit machine). In practice

the minimum memory allocation supported by the runtime is 64 bytes which is aligned

so as to occupy exactly one cache-line. This helps to avoid false sharing of cache-lines,

although the compiler is free to allocate arbitrary sized pieces of process workspace to
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subprocesses. Ultimately this minimal memory overhead makes the creation of very

large numbers of processes practical.

3.7.1 Scheduling

For each physical processor, core or hardware thread in the host system a scheduler

instance, a logical processor, is started. The logical processor contains a number of run-

queues, each of which is a linked list of batches. Batches are in turn linked lists of process

descriptors, linked using the Link field. The structure of the logical processor is shown

in Figure 23. It is divided into two sections, internal fields:

• dispatches holds the remaining process dispatches for the current batch, also

known as the dispatch count.

• priofinity is the current priority and affinity of the logical processor; this is used

to fill in the Priofinity field in the process descriptor.

• curb holds the present batch.

• timeout is the time at which the next timer queue node becomes ready.

• timer queue fptr is a pointer to the front of the timer queue.

• timer queue bptr is a pointer to the back of the timer queue.

• runqueue state is a bitmap in which each bit represents whether a run-queue con-

tains batches.

• runqueue[P] are the run-queue structures, one for each priority level; there are P

priority levels.

• free a LIFO stack of free scheduler data structure allocations. All scheduler data

structures (batches, timer queue nodes, etc) fit within a single cache-line (on 32-bit

systems). By maintaining a pool of available memory, scheduler structures can be
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rapidly allocated with only three memory operations. As the pool is a LIFO, hot

cache-lines will be reused first, reducing cache traffic.

• laundry is a LIFO stack of scheduler structures which are being used by another

logical processor. Periodically these are scanned and available structures placed

on the free stack.

External fields:

• sync a bitmap used to signal external events to the logical processor. This is up-

dated with atomic test-and-set or test-and-clear instructions. It is checked period-

ically by the scheduler.

• bmail is a FIFO queue of batches, a batch mailbox. This is used to send batches to

the logical processor.

• pmail is a FIFO queue of processes, a process mailbox. This is used to send pro-

cesses to the logical processor.

• mwstate is the migration window state bitmap, similar to the runqueue state bitmap

it indicates which migration windows contain batches.

• mwindow[P] are migration windows which mirror (some) batches held in the runqueue.

Again there is one for each run-queue, P in total (one for each priority level).

The logical processor executes a scheduler loop which has three components:

1. Check sync and handle events. These events will either require mailboxes to be

emptied or the timer queue to be checked.

2. If the current batch has finished, retire the batch and select a new one. This may

involve work stealing if the logical processor has no batches.

3. Dispatch the next process from the curb (current batch).
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Figure 23: A logical processor instance schedules batches of processes on each physical
processor. The structure is divided into internal and external parts.

The scheduler executes each batch by copying its details to the curb or active queue.

The dispatches count is calculated based on the number of processes in the batch (mul-

tiplied by a constant) and bounded by the batch dispatch limit (constant). The count is

decremented each time a process is taken from the curb and executed. When the count

reaches zero, and curb is not empty, a new batch is allocated and the contents of curb

copied into it. This batch is then added to the end of the appropriate run-queue.

3.7.2 Batches

Batches are stored in the data structure shown in figure 24. The fields are used as

follows:

• fptr points to the first process in the batch.

• bptr points to the last process in the batch.

• size is the number of processes in the batch.

• next points to the next batch when this batch is on queue or stack.

• state records the batch’s offset when it is placed in a migration window and

whether it is dirty (its pointer is shared) when a batch is migrated.
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Figure 24: Batch data structure layout and fields.

• priofinity is the priority and affinity information of processes in this batch.

• prio[8] is used for priority caching in barrier algorithms (see 3.14).

The scheduler attempts to group processes into the same batch when they commu-

nicate or synchronise with each other. By forming batches in this way, processes which

communicate frequently are scheduled on the same processor, reducing interprocessor

traffic. This is an improvement to Vella’s techniques. Variable size batches are formed

and split automatically using runtime heuristics.

Following a context switch, if the dispatch count is not zero, then the next process on

the active queue is dispatched. Otherwise the scheduler restarts with a new batch. Con-

text switches occur under two conditions. Most commonly, the current process blocks

on a communication or synchronisation primitive and is descheduled. Alternatively, a

process may cooperatively yield to the scheduler, in which case it is placed at the end

of the active queue. With the exception noted in section 3.7.3, processes rescheduled

(unblocked) by the currently executing process, for example by the completion of com-

munication, are also placed on the end of the active queue. It is this action which draws

related processes into the same batch.
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3.7.3 Batch Size

If processes are always drawn into a batch during creation and communication, then

one batch will eventually grow to encompass all processes in the system. This will

prevent batching from having caching benefits as the working set will contain all active

processes. Therefore a mechanism is required to prevent batches growing too large and

to separate processes which lose association.

We observe that in independent subgraphs of a process-oriented program network

there will be points when only one process in the subgraph is active. This process

reschedules other processes in the subgraph which may then in turn become the only

active process. For example, imagine a process which produces data from user input

and initiates computation in other processes. Eventually the computation completes

and the other processes cause the display graphics to be updated. Consider such a

process network alongside a pipeline in which execution (the control flow) follows each

piece of data through the pipeline from process to process. These subgraphs can execute

in parallel as long as they do not communicate with each other. If they communicate

then one subgraph will wait for the other, i.e. only one process will be active.

Based on the above observation we state that if while executing a batch there is

a point at which only one process is active then that batch is probably optimal, i.e.

it contains one independent subgraph or thread of control flow. Conversely batches

which do not meet this condition during execution should be split. Batches are split

by placing the head process of the active queue in one batch, and the remainder in

another. This is a unit-time operation, and so can be carried out frequently. Repeated

execution and split cycles quickly reduce large and unrelated batches to small related

process subgraphs. Erroneous splits will quickly reform based on the other scheduling

rules.

Additional mechanisms to control batch size can be introduced by modifying the

dispatch count in response to specific events. Process creation is one example. During

process creation the new process is placed on the end of the active queue. Process

creation does not cause a context switch; however, the runtime kernel decrements and
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tests the dispatch count. This prevents the batch size exceeding the dispatch count.

Furthermore, if the dispatch count reaches zero and the aforementioned conditions for

batch splitting are met, then a process creating many new processes will be split into a

separate batch from the newly created processes. The newly created batch is then free

to migrate (see section 3.8). Thus a process spawning a large number of children may

continue to execute while its children begin execution on other logical processors in the

system.

3.8 Run-queues and Process Migration

This section describes how logical processors interact as part of a multiprocessor sys-

tem. As logical processors have separate run-queues, work is distributed between log-

ical processors via migration. Processes are free to migrate between logical processors,

except where restricted by an explicit affinity setting. Migration occurs in two circum-

stances:

1. A process which blocks during communication or synchronisation and is de-

scheduled on one logical processor can be rescheduled by a process executing on

a different logical processor. Unless prohibited by an affinity setting, the resched-

uled process continues execution on the rescheduling logical processor.

2. A logical processor which runs out of batches to execute may steal batches from

other logical processors [59, 88].

The first case occurs as part of the communication (3.9) and synchronisation (3.13)

algorithms. The second case is the mechanism by which work is spread across the

system. It is further underpinned by the observation that independent long-running

subgraphs of processes will tend to be split into separate batches, which can be stolen

by idle logical processors.
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Figure 25: A fixed-size migration window array allows one logical processor to “steal”
batches from another.

The run-queues of each logical processor are private and cannot be accessed by

other scheduler instances. To allow batch migration, a fixed-size migration window pro-

vides other logical processors with access to the end of each run-queue. The fixed size

of the window allows it to be manipulated using wait-free algorithms [129, 127]. These

provide freedom from starvation and bounded completion when contention arises, im-

proving scalability over locks.

Figure 25 shows the relationship of the migration window and run-queue. The fptr

and bptr provide a linked-list of batches on the queue. The pending field always points

to a batch; this batch is used to gather processes rescheduled during execution which

do not belong in the current batch (curb) in order to maintain priority and affinity in-

variants. Batches in the migration window must not be modified (to avoid data races),

hence the pending batch is held separately. The priofinity reflects the priority and

affinity of the pending batch.

The state field of the migration window contains a bitmap of active slots, and a

counter indicating which slot is the head. When manipulating the migration window

the logical processor stores new batches at the head offset before incrementing it and

updating the bitmap with a normal write. If a new batch replaces an old one then that

batch is no longer in the window and cannot migrate through work stealing. A remote
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scheduler stealing work uses the bitmap to search for batches to attempt to steal. On

successfully stealing a batch the remote scheduler updates the bitmap using an atomic

test-and-clear operation. This design provides a bias allowing the local scheduler to

update the state field without atomic operations. If the local scheduler overwrites a

bitmap update from a remote scheduler this only reduces the efficiency of the bitmap

by marking a slot active when it is in fact empty, an inconsistency which can be detected

when the slot is manipulated.

The bitmap limits the size of the migration window size to 27 slots on a 32-bit pro-

cessor (5 bits used for head offset). For simplicity a 15 slot migration window is used in

the implementation presented here as large amounts of work stealing are not expected.

If a larger migration window is required then the bitmap could be dropped and a lin-

ear scanning approach used for remote dequeue without affecting the correctness of

the algorithms presented here. The size of the window limits the number of batches

that can be stolen from a given logical processor between run-queue iterations. If the

window is too small then it is possible that batches will not be available for idle logical

processors to steal and not all processors in the system will be able to find work (for a

short period).



CHAPTER 3. SCHEDULING 153

Algorithm 1: Run-queue local enqueue algorithm (wait-free).

1 link batch into the run-queue linked list
2 if batch has affinity then

// enqueue is complete

3 return
4 end
5 load the window state word
6 generate a new offset by incrementing the last offset (handling roll-over)
7 read window slot at the offset
8 if result is null then

// no one else will write to slot

9 simply store batch into slot at offset
10 else
11 atomically swap batch pointer into slot
12 if result is not null then

// batch has been knocked out of window, it is clean

13 clear state field of knocked out batch
14 end
15 end

3.8.1 Local Enqueue

The algorithm 1 is used to place a batch onto the run-queue of a logical processor and

make it visible in the migration window.

Internal operations on the window will be more common than external operations,

hence the presented algorithms are optimised for the uncontended case rather than the

contended case. The effect of this optimisation is that the final step of the algorithm can

produce corruption of the window state word. In the event of corruption the window

will appear to external logical processors to contain more batches than it does; however,

this does not affect correct operation of the external dequeue algorithm (only its oper-

ating efficiency). The result is an algorithm with a deterministic number of steps and at

most one (potentially) expensive atomic operation. On completing the enqueue algo-

rithm, the logical processor updates its runqueue state and mwstate bitmaps to indicate

that the associated run-queue has batches.
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3.8.2 Local Dequeue

To dequeue a batch from its run-queue, a logical processor uses the algorithm 2.

While the dequeue algorithm may fail and have to restart, it is bounded by the

number of batches enqueued on the logical processor and the size of the migration

window. In the worst case, every batch may have been stolen and the scheduler must

scan every batch to discover this. However at most migration window size batches can

be stolen giving a deterministic upper bound to execution. This local scanning does not

create direct contention with other logical processors, but processors may still contend

for underlying system resources such as the memory bus.

Algorithm 2: Run-queue local dequeue algorithm (wait-free).

1 remove the head batch from the run-queue
2 if no batch stored at window offset then

// batch is not in window; dequeue completes

3 return batch
4 end
5 compare and swap null with the migration window slot
6 if compare and swap failed then

// batch has been stolen by an external scheduler

7 place batch on laundry queue for later cleanup
// dequeue has failed

8 if run-queue is not empty then
9 restart

10 else
11 return null
12 end
13 else

// dequeue complete

14 update migration window bitmap
15 return batch
16 end

In the event that the run-queue is empty the logical processor should take the pend-

ing batch if it contains processes. The pending batch is replaced with an empty one.
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3.8.3 Remote Dequeue

When one logical processor attempts to steal work from the migration window of an-

other, it does so using the algorithm 3. This algorithm requires only two atomic opera-

tions in the optimal case.

Having migrated a batch the logical processor copies the contents to a new local

batch data structure and marks the original batch as clean by atomically clearing the

dirty bit in its state field. The pointer to the batch is then discarded. The originating

logical processor will later collect the original batch structure and reuse it. This allows

each logical processor to maintain its own pool of batch structures, and minimises cache

ownership contention (inverting the scheme creates higher cache traffic, see 3.8.4).

Algorithm 3: Run queue remote dequeue and batch theft algorithm (wait-free).

1 load the window state word (creating a local copy)
2 rotate the active bitmap by the last offset
3 while local copy bitmap is not empty do
4 scan the bitmap to select an entry to steal
5 atomically swap null into window slot
6 if result is not null then

// got a batch

7 atomically clear the relevant bit in the window state word
8 return batch
9 else

// batch has already been taken

10 clear associated bitmap bit in the local copy
11 end
12 end

// migration fails

13 return null

3.8.4 Laundry

As noted in the algorithms 2 and 3 a batch is placed on the laundry queue when it is

found to have been stolen. It is not removed from the laundry until the dirty bit is found

to be cleared. This can be done by scanning the laundry queue periodically checking
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the state fields of batches. This behaviour handles the brief period when an remote

scheduler has the pointer to a batch and is still copying it. Once the dirty bit is clear the

remote scheduler has finished with the batch and it can be used again locally.

Alternatively the remote scheduler could assume ownership of batches it steals,

and the local scheduler would discard references to batches that are found to be stolen.

However the local scheduler would still need to signal to the remote scheduler that

it has removed the batch from its queues, which may not happen for a considerably

longer period of time than it takes for a batch to be copied.

Additionally the laundry behaviour presented minimises cache-line ping-pong ef-

fects in the common case. Consider the sequence of events:

1. local scheduler enqueues the batch

2. remote scheduler steals and copies the batch (fptr, bptr, size and priofinity)

3. remote scheduler clears the dirty bit

4. local scheduler reads the window offset from the state field

5. local scheduler accesses the slot and discovers the batch stolen

6. local scheduler tests the dirty bit in the state field and finds the batch clean

This represents the ideal and common case (as batch copying is fast). The cache-line

containing the batch only needs to move twice between steps 1 and 2, and 3 and 4. This

is optimal.

3.8.5 Work Stealing

When a scheduler has no work in any of its local logical processor run-queues it must

steal work. This is done by scanning all other logical processors for work, reading the

migration window state mwstate of these logical processors. The logical processor with

the highest priority available work is selected and the scheduler attempts to steal a

batch from its highest priority run-queue with work. This continues until a batch is
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stolen or all available logical processors are exhausted of work. If no work is available

the scheduler busy waits before trying again. After a number of attempts the processor

sleeps.

Whenever a scheduler selects a new batch from the logical processor it checks whether

it has excess work available for migration by testing the mwstate bitmap. If work is

available the scheduler tests a global bitmap of sleeping logical processors. The first

sleeping logical processor is then woken up so it can perform work stealing. By starting

one sleeping logical processor at a time, thrashing from multiple processors attempting

simultaneous work stealing is avoided.

3.8.6 Priority

This implementation preserves the semantics and behaviour of process priority as im-

plemented by Barnes [48]. A separate run-queue is used for each priority level. Queues

are serviced in priority order, with lower priority queues not dispatched until higher

priority queues are exhausted. If a higher priority run-queue than the current becomes

available, e.g. by resuming a suspended high priority process, the present batch is

saved and the scheduler switches to the higher priority run-queue. Batches only ever

contain processes of the same priority.

As detailed in section 3.8.5, the work stealing algorithm respects priority by at-

tempting to migrate high priority work first. If work stealing is not triggered then it

is possible for logical processors to be running at different priority levels. However any

interaction between high priority and low priority processes will cause the low priority

process to be pre-empted.

3.8.7 Affinity

As previously mentioned process affinity is supported. This can be used to bind a

process to a set of logical processors. This is stored together with the priority to form

the Priofinity field of a process. Batches only ever contain processes with the same
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affinity bitmap. Batches of affine processes (processes with processor affinity) are not

placed in the migration window, meaning a scheduler cannot accidentally steal work it

cannot execute.

Whenever a scheduler reschedules a process which has an affinity bitmap which

does not include its itself the process is sent directly to one of the logical processors in

the affinity bitmap. This is done via the pmail queue of that logical processor and may

cause it to be woken if it is sleeping.

An empty affinity bitmap, the default, means a process can execute anywhere. This

is equivalent to a full affinity bitmap except that a full bitmap disables work stealing of

that process. Additionally as processes only ever occupy batches with other processes

with the same affinity bitmap, the affinity bitmap can be used to subtly influence the

batching mechanism. In practice this behaviour has not been used.

3.8.8 Blocking System Calls

Barnes added language and runtime support for blocking system calls [48]. These allow

an occam process to invoke a piece of external code which runs in a separate operating

system thread. Through this mechanism the external code runs concurrent to occam

processes executing the runtime scheduler thread.

In Barnes’ model the language invokes the runtime kernel to dispatch a blocking

system call. A thread pool of dispatch threads is used to reduce or eliminate the overhead

of allocating a thread for each call as threads can be reused. A complication is that on

completion of the system call the dispatch thread must return the process to the CCSP

run-queue: this is a race hazard.

In the modified CCSP run-time presented here, the race hazard with process return

is trivially removed. On completion of a blocking system call the dispatch thread sends

the process batch to a logical processor via its bmail (batch mailbox). The batch mailbox

is used rather than the process mailbox because the process workspace cannot be used

to store a process descriptor as the compiler does not allocate sufficient memory to

store the Priofinity word. Thus a batch is used as the Priofinity is stored in the batch
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structure not the process descriptor.

Affinity is respected by only mailing the batch back to a suitable logical processor.

The thread pool is also divided to allow a single shared pool for requests with no affin-

ity mask and a per-processor pool available for affine requests. Each affine request pool

has at most one dispatch thread, and requests for this thread are queued. This means

that if a process sets an affinity mask its blocking system calls will only ever executed

on a single thread, and requests for that thread serialised. This is useful for external

libraries or functions which are not re-entrant, thread-safe or contains other race haz-

ards.

3.8.9 Mailboxes

Enqueue and dequeue from process and batch mailboxes (pmail and bmail) is wait-

free with algorithm 4 and algorithm 5. Each mailbox has a front pointer fptr and a

back pointer bptr. The algorithms shown refer to a node which has a next pointer. For

batches the next pointer is the next pointer in the batch. For processes the Link field is

used as the next pointer.

Both algorithms are wait-free and rely on the fact that only one logical processor

ever dequeues from the front of the queue. Only nodes which have the next pointer set

or are pointed to by both fptr and bptr can be dequeued. This allows detection of only

partially queued nodes which cannot be dequeued as they will be updated (when the

next pointer is written). Thus the dequeue algorithm can fail if a node is only partially

enqueued.

This dequeue failure is not a problem as the presence of mail is not signalled until

the enqueue completes. Likewise the mail signal flags in the sync word of the logical

processor are cleared (by atomic swap) prior to attempting a dequeue. Thus a partially

complete enqueue at the time of dequeue will always raise a new signal when it com-

pletes.
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Algorithm 4: Mailbox enqueue algorithm (wait-free).

1 node[next]← null
2 node’← Swap(bptr, node)
3 if node’ = null then
4 *fptr← node
5 else
6 node’[next]← node
7 end

Algorithm 5: Mailbox dequeue algorithm (wait-free).

1 node← *fptr
2 if node 6= null then
3 bptr’← *bptr
4 if bptr’ = node then
5 if CAS(bptr, node, null) then
6 CAS(fptr, node, null)
7 return node
8 end
9 ReadBarrier()

10 end
11 node’← node[next]
12 if node’ 6= null then
13 *fptr← node’
14 return node
15 end
16 end
17 return null
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3.9 Communication

Interprocess communication is central to process-oriented programming, for sharing

state and synchronising computation. The efficiency of communication therefore di-

rectly affects the performance of process-oriented designs.

The runtime kernel provides a single basic communication primitive for processes

to exchange data: point-to-point synchronised channels. Synchronised channels re-

quire no buffers and data is copied or moved (depending on the mode of operation)

directly between the source and destination processes. Buffered channels can be con-

structed efficiently by placing buffer processes between communicating processes. Trans-

actions involving many parties sharing a channel are implemented by associating the

channel with a mutual exclusion lock (3.13).

Operations for channel input and output take a source or destination buffer and a

size in bytes to copy. Alternatively the source and destination may be a reference to a

mobile type (appendix B) allocated through the runtime kernel, in which case the ref-

erence is moved between the processes together with ownership of the object. If the

mobile type is data, then the reference is moved and deleted from the source, maintain-

ing the invariant that occam-pi programs are free from aliases to mutable data. When

a channel end is communicated, the type is checked and if it is not shared then it is

treated as mobile data. If it is shared then the reference is copied and the reference

count atomically updated. On communication of a barrier type, the receiver is auto-

matically enrolled on the barrier (and its reference count maintained).

A channel is represented by a single machine word. The word stores a pointer to

the process descriptor (3.7) of the process waiting to communicate on the channel. The

process descriptor is guaranteed to be word-aligned, allowing use of the low order bits

in the channel word for communicating other information. For the algorithm which

follows only the alternation bit is relevant. It indicates whether the process descriptor

stored in the channel is blocked on this channel or waiting on a number of channels and

events (3.11).
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Algorithm 6: Channel communication algorithm (wait-free).

1 read the channel word
2 if word is null or has alternation bit set then
3 store the process state in the process descriptor
4 store the destination or source buffer pointer in the process descriptor
5 atomically swap the process descriptor with the channel word
6 if result is null then
7 context switch occurs, a new process is selected as in section 3.7
8 return
9 else if result has alternation bit set then

10 trigger the alternation event as in section 3.11.8
11 return
12 else

// original read was stale, continue

13 end
14 end

// channel word is not null, a process is blocked on the channel

15 load the destination or source buffer pointer from the blocked process descriptor
16 copy data or move references and transfer ownership
17 reset the channel word to null
18 reschedule the blocked process
19 return

Basic channel communication, regardless of direction, is performed using algo-

rithm 6. Using this algorithm the second process to reach the channel completes the

synchronisation and thus the communication. This results in, typically, only one of the

two processes performing an atomic operation.

3.10 Timers

The occam-pi language supports timers which can be read and waited on. In order

to support these timers, CCSP provides a machine word size clock which ticks every

microsecond. Where possible this is implemented using the CPU instruction counter.

Figure 26 shows an example of using a timer in occam.

When a process waits on a timer (waiting for a specific point in time to pass) a timer
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TIMER t:

INT now:

SEQ

t ? now -- read time

t ? AFTER (now PLUS 1000) -- wait 1ms

Figure 26: Timer syntax in occam.

time

next

prev

bnext

wptr

state

scheduler

Link

Timer Queue Node Workspace

Figure 27: Timer queue node structure.

queue node is allocated for it. The structure of the timer queue node can be seen in

figure 27. This node is stored on an ordered double linked timer queue on the current

logical processor. Each logical processor has its own timer queue (timer queue fptr

and timer queue bptr). The time field holds the time at which the node expires. The

node fits in a batch structure and can be treated as a batch (for laundry purposes). To

support this the bnext field is provided (for linking on the laundry stack) along with

the state field to hold the dirty bit. The scheduler field points to the logical processor

where the node is queued; this allows optimisation when an alternation with a timer

node completes on the same logical processor as its timer queue node is allocated on.

The wptr field points to the process descriptor (process workspace), it is used to provide

interlock as the wptr is atomically swapped when the node expires.

The expiry time of the next timer queue node is cached in the logical processor’s
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timeout field. The scheduler regularly tests whether timeout field of the logical proces-

sor has passed. By default this occurs between batches or when a timer interrupt occurs

(an operating system signal). If the timeout has expired then the timer queue is walked

and processes whose timeouts have passed are rescheduled. If only the timer queue is

populated and no further work is available then the scheduler uses operating system

calls to sleep an appropriate amount of time.

3.10.1 Timer Expiration

When the timer queue entry expires, the scheduler for that timer queue executes algo-

rith 7. This algorithm must interface with possible timer alternations, as described in

section 3.11. If a process completes a timer queue alternation on another logical pro-

cessor, then the wptr pointer is stolen by that logical processor. The timer queue node

is also placed on the laundry stack of the other logical processor. It is then the respon-

sibility of the logical processor which created the node to discover this, mark the node

clean and forget the reference to the node. To facilitate this the state field of the node

is marked dirty when it is allocated.

3.11 Alternation

For many purposes, blocking channel communication is sufficient; however, processes

often need to multiplex between a number of channels and other events. CCSP sup-

ports choice (2.3.3) over a number of channels and timer events. This is called alternation

and supports the occam ALT language construct. Figure 28 shows an example alterna-

tion in occam.

Alternation allows a process to wait for one of a set of channels to become ready.

When an element of the waited set becomes ready, the process is rescheduled and can

make a choice as to which channel to communicate with. This is similar to the POSIX

select system call.
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Algorithm 7: Timer expiry algorithm (wait-free).

1 unlink the timer queue node from the timer queue
2 if wptr is null then

// process stolen by alternation

3 set batch state to clean
4 else if wptr has alternation bit set then

// active alternation

5 atomically swap null with wptr field
6 if result is not null then
7 execute event trigger algorithm on result (algorithm 12)
8 end
9 set batch state to clean

10 else
// no alternation

11 store the current time into the process descriptor Time_f
12 reschedule the process
13 place timer queue node on free list
14 end

CHAN OF INT chan.0, chan.1:

TIMER time:

INT x:

ALT

chan.0 ? x

-- x receives value from chan.0

chan.1 ? x

-- x receives value from chan.1

time ? AFTER (now PLUS 1000)

-- 1ms passed and no channel became ready

Figure 28: Alternation syntax in occam.
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alt

enbc

altwt

altend

disc dist

enbt

Figure 29: Alternation instruction order.

This section presents algorithms designed for one process waiting on a set of exclu-

sively input or output channels, while other processes sharing those channels commit.

This constraint is enforced by the present version of the occam-pi language which only

allows alternation on input. When two or more processes wait on overlapping sets of

channels a race hazard exists (2.3.3). More general synchronisation algorithms are part

of ongoing research.

Alternation is a multiple stage process. Figure 29 illustrates the instruction sequence

and figure 30 the associated state transitions. First the process executes an ALT instruc-

tion which sets up the process descriptor’s initial state. The process is now in the en-

abling state. Then a number of ENBC (enable channel) and ENBT (enable timer) instruc-

tions setup the events the process is waiting for. At any point in this sequence one of

the events can already be ready or become ready causing the process state to transition

to ready. Having enabled all events, the ALTWT (alternation wait) instruction is executed.

If no events are ready then the process is in the waiting state and is descheduled. When

the ALTWT completes the process will be in the ready state as at least one event is ready.

The process disables channels and timers with DISC and DIST instructions. Finally the
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Enabling

Waiting

Ready

Ready

alt

altwt

event

event

altwt

altend

Figure 30: Alternation state transi-
tions.

enabling, 
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alt

altwt

event
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waiting
count ≥ 1
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count = 0

ready channel / timer

Figure 31: Revised alternation state
transitions.

ALTEND instruction cleans up remaining state and causes the process to branch to code

for handling the event which became ready. The order in which channels are enabled

or disabled can be used to implement priority in selecting events [52].

Historically the state of the process has been stored in the State field of the process

descriptor. During channel communication the party completing the communication

reads the State field of the process descriptor of the blocked process. If the value is one

of the three states enabling (1), waiting (2) or ready (3) the blocked process is alternating,

otherwise it is a regular communication and the State field is a Pointer field.

In Vella’s multiprocessor implementation the same state model is used [250]. Dur-

ing a channel communication:
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1. the alternating process descriptor is retrieved by atomically swapping the com-

municating process descriptor into the channel word;

2. the alternation state read is read from the alternating process descriptor and then

potentially atomically updated.

These are two distinct actions which can be interrupted by operating system pre-emption.

If this happens then the process descriptor pointer retrieved during 1 may no longer

point to a process descriptor at step 2. During the pre-emption any sequence of events

can occur on another scheduler including the completion of the alternation after which

any sequence of operations may follow. To avoid this a way of knowing about pointers

to the alternating process descriptor held in pre-emption is required.

An important observation is that the number of possible pointers to the alternating

process descriptor is bounded by the number of channels (and timers) enabled. The

algorithms presented here use this to reference count the alternating process descriptor.

The process descriptor must be maintained as long as the reference count is greater than

zero. Maintenance of the process descriptor is achieved by preventing the alternation

from completing until all references have returned or been deleted.

The reference count is stored in the State field. This prevents reads of the process

descriptor State field being sufficient to distinguish an alternating process. This is be-

cause a Pointer may point to any byte in system memory. Low values such as 1, 2

and 3 address the first word of memory which will almost certainly be invalid on most

systems (to maintain C NULL pointers as invalid). The same is not true of larger val-

ues. Instead an alternating process is signalled to the communication algorithm by an

alternation bit in the channel word. This also allows branching of the communication

algorithm to the alternation specific code based on the value of the first read of the

channel word.

To further simplify parts of the algorithm the alternation state is changed to be com-

posed of distinct condition bits rather than a numeric state.

• enabling bit signifies that the alternation is in the state before ALTWT.
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• not ready bit signifies that no events are ready before waiting.

• waiting bit signifies the process is descheduled and waiting for events

These bits are stored in the State field and unlike a numeric state can be updated in-

dependently with test and set atomic operations if required. They allow identification

of the state transition path where a concurrent event causes an alternation to become

ready while enabling.

The revised state transitions are illustrated in figure 31. Initially the state is enabling,

not ready and has a reference count of 1. Any action by the process or external event

(e.g. other process communicating) that causes a channel or timer to become ready

clears the not ready bit. The ALTWT (alternation wait) signals the end of the enabling

phase and clears the enabling bit. If the not ready bit is set when ALTWT occurs then

waiting is set and the process is descheduled. The waiting bit indicates the process

must be rescheduled if an event occurs. In either case when a channel or timer is ready

the disabling state is reached, this is signified by the absence of other bits. Disabling

operations reduce the count by collecting references, the ALTEND (alternation end) col-

lects any references which have been stolen. Having completed an ALTEND the reference

count will reach zero.

3.11.1 Initialisation

Initialisation sets up the process descriptor for subsequent alternation operations. As

the process descriptor has not yet been shared, protection from races is not required.

The State field of the process descriptor is initialised. The alternation state consists of:

• flags indicating what stage of alternation the process is in. The initial flags are

enabling and not ready.

• A reference count which tracks the number of pointers to the process descriptor,

initially one. When a logical processor triggers an event which is part of an al-

ternation it takes one of these references. The alternation only completes when
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all references have been counted back through the disable algorithm or via event

triggers.

If required (in a timer alternation) the TLink and Time_f fields are also initialised.

3.11.2 Channel Enabling

Each channel a process alternates over is enabled using algorithm 8.

Algorithm 8: Channel enabling algorithm (wait-free).

1 read the channel word
2 if word is not null then
3 atomically clear the not ready flag of the alternation state

// enable operation completes indicating the channel is ready

4 return ready
5 else
6 atomically swap a pointer to the process descriptor with the alternation bit set

into the channel word
7 if result is not null then

// value from initial read was stale

8 write the result back to the channel
9 return ready

10 else
11 atomically increment the reference count in the State field
12 return not ready
13 end
14 end

3.11.3 Timer Enabling

Each timer that is enabled updates the Time_f field of the process descriptor. This is

done such that the Time_f represents the earliest point in time, as this will be the first to

trigger. If the timer value has already passed then the not ready flag of the alternation

state is cleared.
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3.11.4 Waiting for Events

Once the process has enabled all the events it makes the ALTWT (alternation wait) kernel

call. An atomic compare and swap is used to clear the enabling and not ready flags, and

set the waiting flag. If the compare-and-swap succeeds then the process is descheduled

and a context switch occurs. Failure indicates that an event has become ready, in which

case the enabling flag is atomically cleared and execution of the process continues.

If any timers were enabled during the alternation the Time_f field is rechecked for

expiry during the ALTWT. If the time has not passed then a timer queue node for the

process is created. A reference to the timer queue node is stored in the TLink field.

3.11.5 Channel Disabling

Having been woken up, the process disables channels using algorithm 9.

Algorithm 9: Channel disabling algorithm (wait-free).

1 read the channel word
2 if word does not contain a pointer to the process descriptor of the alternating process

then
// channel is ready

3 return ready
4 else
5 compare and swap null into the channel
6 if compare and swap fails then

// channel just became ready

7 return ready
8 else

// channel is not ready; reclaim reference

9 atomically decrement the reference count in the State field
10 return not ready
11 end
12 end
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3.11.6 Timer Disabling

The process executing the alternation disables timer events using algorithm 10. This

algorithm interacts with details of the timer structure (3.10). Timer events return ready

if the time queue pointer is set to time set and the timer timeout is after the time specified

when disabling the event. An optimisation to the algorithm removes the atomic swap

when the timer queue node is part of the timer queue of the runtime scheduler on which

the process is currently executing, and additionally removes the timer queue node from

the timer queue. When modifying timer queue nodes which are on a scheduler other

than the current they cannot safely be removed from their associated timer queues, so

are reaped later by signalling the scheduler that it has dead timer queue nodes.

Algorithm 10: Timer disabling algorithm (wait-free).

1 read TLink field of process descriptor to get timer queue node
2 if TLink is null then

// timer queue node was never allocated

3 return not ready
4 end
5 atomically swap null with the wptr in the timer queue node
6 if result is not null then

// timer event has not fired

7 atomically decrement the reference count in the State field
8 save “time not set” constant to the TLink field
9 place the timer queue node on the laundry stack

10 return not ready
11 else

// timer event has fired

12 copy time field of the node into the Time_f field of the process descriptor
13 save “time set” constant to the TLink field
14 place the timer queue node on the laundry stack
15 return ready
16 end
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3.11.7 Finalisation

Having disabled all channels and timers, the alternation is finalised using algorithm 11.

This completes the alternation and after this operation communication with any ready

channels may take place.

Algorithm 11: Alternation finalisation algorithm (wait-free).

1 read the reference count from State field of process descriptor
2 if count is not one then
3 save the process state as if to context switch
4 atomically decrement and test the reference count
5 if count is not zero then
6 deschedule alternating process and context switch
7 return
8 end
9 end
// alternation is finalised

10 return

3.11.8 Event Trigger Algorithm

Logical processors execute the event trigger algorithm (algorithm 12) to signal an alter-

nating process that one of its waited events has become ready. This is the algorithm

referenced in channel communication, algorithm 6. If a logical processor in the event

trigger algorithm holds the final reference then it is responsible for rescheduling the

alternating process.

3.12 Extended Rendezvous

Barnes added extended rendezvous to occam-pi [48], which is similar to Ada’s ex-

tended rendezvous (2.5.2). This allows a receiver (or sender) to block the other party

in the communication after synchronisation, creating a temporary mutual exclusion

such that the initiator of the rendezvous can reason that the other party is not running.
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Algorithm 12: Event trigger algorithm (wait-free, bounded on number of chan-
nels).
1 repeat
2 read the State field of the process descriptor to trigger
3 generate a new state with the not ready and waiting flags cleared
4 compare and swap new state into State field
5 until compare and swap succeeds;
6 if original state has waiting flag set or the new reference count is zero then
7 add the process descriptor onto a run-queue, rescheduling the alternation

process
8 end

CHAN OF INT c:

INT x:

SEQ

c ?? x

SEQ

-- x has been received , but sender is still blocked

... use x ...

-- sender is been released

Figure 32: Extended rendezvous syntax in occam.

Figure 32 shows an example of extended rendezvous in occam-pi. Figure 33 shows

execution of processes performing an extended rendezvous.

The CCSP runtime supports an extended rendezvous as a single channel alterna-

tion, and a modified communication algorithm for the initiator. The initiator makes

a XABLE (rendezvous enable) call, which is the same as ALT (alternation initialise), ENBC

(enable channel) followed by ALTWT (alternation wait). The actual state of the alterna-

tion does not need to be tracked beyond this. If the channel is ready then the process

continues execution, otherwise the process will be rescheduled by the channel com-

munication algorithm (algorithm 6). Having become active again the process performs

communication using a modified communication algorithm which does not reschedule

the other process or remove its process descriptor from the channel word. To release the

other process the initiator makes an XEND (rendezvous end) call which loads the process

descriptor from the channel word, clears the channel and reschedules the other process.
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channel input

channel output

Rendezvous Code

Process A

Process B

Process A Process B

Execution

Figure 33: Execution of processes performing extended rendezvous. Process A per-
forms an extended input and waits for Process B to arrive. On arrival, Process B is
blocked and Process A is rescheduled. On completion of the rendezvous Process B is
also rescheduled.

3.13 Mutual Exclusion

Section 3.9 describes communication channels capable of synchronous point-to-point

exchanges involving pairs of processes; however, there are designs which require mul-

tiple communication peers to use the same channel. This is particularly useful for im-

plementing the deadlock-free client-server design pattern [259], in which a number of

clients communicate with a single server over channels.

To support this functionality mutual exclusion locks can be associated with the

channel directions. This allows ordered multi-access (used by multiple processes) chan-

nels to be constructed. The lock claim and release algorithms are lock-free2 and prevent

starvation using FIFO queuing. Importantly, the occam-pi compiler enforces claim and

release semantics on these locks, so that a programmer cannot forget to release the

channel lock.

The mutual exclusion lock is represented by a queue with a front pointer (fptr) and

back pointer (bptr). In a sense the mutual exclusion lock is an enhanced version of

the mailboxes used for process and batch communication (3.8.9), but where the present

lock holder dequeues processes.

2Claim operations can block the process, but are lock-free from the perspective of the logical processor.
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The lock is taken using algorithm 13 and released using algorithm 15. These algo-

rithms both use algorithm 14 for dequeuing processes from the semaphore queue. Due

to looping behaviour these algorithms are lock-free not wait-free: a faster processor can

detect that a slower processor is stalled on the queue, abort and retry. In the case where

an enqueue interferes with a dequeue, the enqueue will recover the lock and reschedule

a process from the queue. This means that although one scheduler can fail to dequeue,

another will always succeed.

The lock itself is represented by the lowest order bit in the back pointer, if this bit

is set the lock is available, otherwise it is held by a process. Storing this bit in the

back pointer means release of the lock can interfere with operations to add processes

to the queue. This is intentional as release of a lock should cause another scheduler

attempting to queue a process to try the lock again, rather than enqueue the process.
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Algorithm 13: Mutual exclusion lock claim algorithm (lock-free).

1 p← *bptr
2 if p = 1 then

// lock available

3 if CAS(bptr, 1, 0) then
// lock acquired

4 continue process execution
5 end

// reload back pointer

6 p← *bptr
7 end
// lock not available; attempt to queue process

8 while not CAS(bptr, p, Wptr) do
9 p← *bptr

10 end
// p holds old back pointer; update front pointer

11 if p = 0 or 1 then
12 *fptr←Wptr
13 else
14 p [Link]←Wptr
15 end
16 if lowest bit of p is set then

// got lock via CAS

17 attempt dequeue and reschedule algorithm 14
18 else if TestAndClear(bptr, 0) then

// got lock by atomic operation

19 ReadBarrier()

20 attempt dequeue and reschedule algorithm 14
21 end
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Algorithm 14: Mutual exclusion lock dequeue algorithm (lock-free).

1 fptr’← *fptr
2 if fptr’ 6= 0 then
3 bptr’← *bptr
4 lptr← fptr’ [Link]
5 if bptr’ = fptr’ then
6 *fptr← 0
7 if CAS(bptr, fptr’, 0) then

// dequeue successful

8 return fptr’

9 end
// enqueue interleaved

10 *fptr← fptr’
11 restart
12 else if lptr 6= 0 then

// dequeue successful

13 *fptr← lptr
14 return fptr’

15 else
// create pointer to fptr’ [Link]

16 p← fptr’ [Link]
17 end
18 else

// create pointer to fptr
19 p← fptr

20 end
// partial enqueue is blocking dequeue; release lock

21 TestAndSet(bptr, 0)
22 MemoryBarrier()

23 p← *p
24 if p 6= 0 then
25 if TestAndClear(bptr, 0) then

// got lock back; restart

26 ReadBarrier()

27 restart
28 end
29 end

// dequeue failed

30 return 0
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Algorithm 15: Mutual exclusion lock release algorithm (lock-free).

1 atomic p← *bptr
2 if p = 0 then
3 if CAS(bptr, 0, 1) then

// lock released

4 return
5 end
6 end
7 attempt dequeue and reschedule algorithm 14

3.13.1 Operation and Correctness

The lock is claimed by setting the lock bit (in bptr) from 1 to 0. Algorithm 13 initially

tests for the simplest case: lock is available and queue is empty (line 2). In this case

the algorithm attempts to claim the lock (line 3). If this does not succeed the process

is added to the back of the queue by atomically setting the bptr. If the queue was

empty then the front pointer fptr is set (line 12), else the link pointer is updated process

descriptor which was previously the back of queue (line 13). Once this has completed,

the old value of bptr is tested. If the lock bit is set then the lock has been claimed

incidentally and algorithm 14 is invoked. Otherwise a final attempt to claim the lock is

made using a TestAndClear operation (line 18).

On completing algorithm 13 one of three possible states is reached:

1. The current process has claimed the lock and is still running.

2. The current process has been added to the end of the lock queue, and the lock is

still held by another process. In which case the scheduler will dispatch another

process.

3. The current process has been added to the end of the lock queue, and the lock is

available. In which case algorithm 14 is invoked.

Algorithm 14 removes the first element of the queue. This algorithm is only ex-

ecuted by one logical processor at a time (the one holding the lock); however, while
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execution of the algorithm is not interleaved, removing processes from the lock queue

requires the detection of interference from enqueue operations. First the front pointer

of the queue (fptr) is tested; this will only be set if at least one process has been fully

enqueued (line 2). The back pointer of the queue (bptr) is loaded (line 3), along with

the link pointer of the front queue node (line 4). If the queue has a single element then

the front and back pointers will be the same (line 5).

If the queue has only a single element then fptr is set to null (line 6). Only this algo-

rithm will be updating fptr; algorithm 13 only operates on the fptr when the queue is

empty. The bptr is set using a compare-and-swap operation to detect interference with

an enqueue from algorithm 13. If this operation fails then fptr must be restored and

the algorithm restarted. As the interfering operation is not affected then its progress is

guaranteed.

If the queue has multiple elements then the link pointer must be valid (line 12). It

will be null if algorithm 13 has not completed an enqueue, i.e. a partial enqueue. If the

link pointer is valid then fptr is updated and dequeue succeeds (line 13 and 14).

If the front pointer is null (line 2) or the link pointer is null (line 12), then the lock

is released (line 21) and operations serialised with a memory barrier (line 22). The

respective pointer is then reloaded (line 23). If the value is still null then the stalled

enqueue has not completed and dequeue fails; when the stalled enqueue completes it

will claim the lock and initiate a dequeue. Otherwise the stalled enqueue has finished

and the lock is reclaimed (line 25) and the algorithm restarted; unless the lock has been

taken by another logical processor.

Algorithm 15 releases the lock by setting the lock only in the case that the queue

is empty, i.e. bptr is null. Otherwise it invokes algorithm 14 to dequeue the next pro-

cess. In this way the lock is passed from the active process to the next waiting process

preserving FIFO ordering of lock operations.
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3.14 Barriers

The occam-pi and CCSP runtime support barrier synchronisations. Processes can enroll,

resign and synchronise on barriers. Processes synchronising on a barrier are blocked

until all other processes enrolled on the barrier also synchronise. Barriers may also be

communicated by mobile reference over channels, atomically enrolling the receiver as

part of the communication; this permits semantics such as those described by Welch

and Barnes [255].

Barriers of this type are useful when implementing agent simulations. Each agent

is enrolled on a common barrier and synchronises on it to maintain time-step with

the other agents in the simulation. With many thousands of agents synchronising, the

performance of barrier operations is critical. It is also important to minimise the time

between barrier completion and returning to the state where all enrolled processes are

scheduled for execution across available logical processors.

The root barrier structure consists of a state word, which describes the current state

of the barrier including the number of processes yet to synchronise, a bitmap of ac-

tive scheduler pointers, followed by an array of pointers to scheduler specific data.

To reduce the number of atomic operations and contention between schedulers on the

barrier each logical processor maintains private queues of blocked processes in batches

within the barrier.

The structure of the barrier can be seen in figure 34. The only shared part of the

barrier is the state word. The highest order bit is used to indicate the barrier is syncing.

The two bits below this represent the tag for separating barrier synchronisations. The

remaining bits are the count.

Each logical processor allocates a barrier head which fits in a batch structure (allow-

ing the reuse of memory allocations). A pointer to this is stored in a dedicated slot in

the barrier structure. This pointer can be safely stored and read without concern for

other schedulers. The head bitmap is atomically updated once when the barrier head is

stored.
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Figure 34: Internal structure of barriers.

The tag in the barrier state word identifies operations occurring before and after a

barrier completion. Barrier head pointers are stamped with the current tag value (in

the low-order bits) when they are attached to the barrier. The tag is incremented on

barrier completion. This allows the completion algorithm (algorithm 20) to detect bar-

rier head pointers which require completion (old tag), or have already been completed

by another logical processor (new tag). In principle only two tag states are required;

however, using four states (two bits) allows for debugging.

3.14.1 Enrollment

Enrolling processes on the barrier is trivial. The state word is simply atomically in-

cremented by the number of processes being enrolled. This is wait-free. Storing flags

in the high-order bits of the state word simplifies this operation as they need not be

considered by the atomic increment.

3.14.2 Resignation

Resignation is more complex than enrollment as the barrier count may be reduced to

zero and the barrier completed. Algorithm 16 is used to resign processes.

If the count would be reduced to zero by the resignation (line 2) then the algorithm
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initiates barrier completion. If interference is encountered (line 8 or 14) then the algo-

rithm is restarted. Restarting the algorithm creates a loop; however, interference from

resignation and synchronisation operations is bounded by the number processes en-

rolled on the barrier. Therefore in the absence of enrollment the resignation operation

will complete in a finite interval (when all synchronisation and resignation operations

complete) 3. If enrollment causes interference then the enrollment operation is guaran-

teed to make progress ensuring system-wide progress.

Algorithm 16: Barrier resignation algorithm (lock-free).

1 read the barrier state
2 if count is equal to number of processes resigning then
3 generate a new barrier tag (the next in sequence, wrapping)
4 new state = 1 | tag | syncing

5 compare and swap old state with new state
6 if success then

// barrier completed

7 call barrier completion algorithm (algorithm 20)
8 else

// interference

9 restart
10 end
11 else
12 new state = state − number of resigning processes
13 compare and swap old state with new state
14 if failed then

// interference

15 restart
16 end
17 end

3Assuming that for any two competing compare-and-swap operations one makes progress.
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3.14.3 Synchronisation

When a process synchronises on a barrier it is placed on the barrier queue before the

barrier count is updated and barrier completion detected. The major complexity in-

volved with synchronisation of a barrier is that additional processes may be enrolled at

any point by another scheduler. In particular one scheduler may enroll processes on the

barrier which in the process of being completed by another scheduler and these then

begin synchronising on the barrier. The algorithms outlined here provide interlock to

detect and work safely with these scenarios, at the cost of added complexity.

When a process synchronises on a barrier the algorithm 17 is used to access the

barrier head (see figure 34). Once the barrier head has been located the process being

queued on the barrier is stored into a batch linked to it. The size of the linked batches

is maintained at approximately one-eighth the size of the barrier. This is to prevent

barrier completion flooding the migration window. Processes of different priorities

and affinities are separated into different batches. A fixed size hash table is used to

accelerate lookup of the present batch for any given priority; this uses the prio slots of

the barrier head and batch structures.

Having queued the synchronising process in a batch on the barrier head, the sched-

uler executes algorithm 18 to decrement the barrier count and potentially complete the

barrier. This is similar to resignation. Once the barrier count has been updated the

completion algorithm (algorithm 20) is invoked if the syncing flag was set as part of

the state change. The syncing flag essentially locks barrier against further completion,

preventing concurrent execution of the completion algorithm. Algorithm 19 gives an

overview. Combined these algorithms are lock-free.

3.14.4 Completion

To complete the barrier the completing scheduler must gather all the queued processes

and their batches then locally schedule them or distribute them to suitable schedulers

if affine. The barrier state (including the count of enrolled processes) is rebuilt while
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Algorithm 17: Barrier head access algorithm (wait-free).

1 read the state

2 read the head pointer slot indexed by the logical processor number
3 if syncing flag set in state word, the head pointer is not null and the low order bits of the

head pointer do not match the tag then
4 atomically swap null into the head pointer
5 if result is not null then
6 reschedule batches in barrier head as in the barrier complete algorithm

(algorithm 20)
7 end
8 end
9 if head pointer is null or became null then

10 allocate the barrier head
11 place the tag (from the state) into the low order bits of the pointer
12 store the pointer into the head pointer slot
13 atomically set the relevant bit in the head bitmap
14 end
15 mask out the low order bits of the head pointer
16 return head pointer

Algorithm 18: Barrier synchronisation count update algorithm (lock-free).

// use the previously read barrier state, if it has changed

(unlikely) the compare and swap operation which follows will

detect this

1 repeat
2 if looping then
3 reload state

4 end
5 if count is one then

// this it the last process

6 generate a new barrier tag (the next in sequence, wrapping)
7 new state = 1 | tag | syncing

8 else
9 new state = state − 1

10 end
11 compare and swap old state with new state
12 until compare and swap succeeds;
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Algorithm 19: Barrier synchronisation algorithm (lock-free).

1 get barrier head (algorithm 17)
2 enqueue process on to barrier head
3 increment the count in the barrier head
4 update barrier count (algorithm 18)
5 if syncing flag set then
6 complete barrier (algorithm 20)
7 end

rescheduling the barrier processes. These steps are performed by lines 2 through 20

in algorithm 20. Once this is complete all processes blocked on the barrier have been

rescheduled. The state word can then be unlocked by removing the syncing flag and

one from the count (line 30 through 39). Line 23 detects if the barrier has been com-

pleted again during the execution of the algorithm, if so the algorithm must restart.

Critically this algorithm is only executed by one logical processor, effectively creating a

producer consumer relationship with logical processor which enqueue processes dur-

ing completion.

Algorithm 20 is lock-free as termination is not guaranteed for a slow processor, but a

slow processor will not block faster ones. It is possible that while completing the bar-

rier all rescheduled processes will be stolen by other schedulers, execute and be queued

on the barrier again before the completing scheduler removes the syncing flag (reset-

ting the barrier). In this case the algorithm restarts as if the barrier needs completing

again (which it does). This can repeat indefinitely. However in practical terms it is

highly unlikely given the respective speed of work-stealing, process execution and the

barrier completion algorithm that this will happen unless the completing process is pre-

empted by the operating system. It is also unlikely that the scheduler will be repeatedly

pre-empted such that it can never finish the completion algorithm before work is stolen

and completes. Even if this does happen, processes are still being executed by other

logical processors and thus system-wide progress is guaranteed.
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Algorithm 20: Barrier completion algorithm (lock-free).

1 atomically swap zero with the head bitmap
2 foreach head slot marked active in head bitmap do
3 read head slot
4 if tag in head pointer is not equal to previous tag (cached) then

// another scheduler has already taken and processed the old

barrier head

5 skip this slot
6 end
7 compare and swap null into the head slot
8 if failure then

// another scheduler has already taken and processed the old

barrier head

9 skip this slot
10 end
11 atomically increment the state by the count in the barrier head
12 foreach batch in the barrier head do
13 if batch is affine then
14 mail batch to an appropriate logical processor
15 else
16 add the batch to a local run-queue
17 end
18 end
19 release the barrier head
20 end
21 repeat
22 load the barrier state
23 if count is one, tag is unchanged, syncing flag is set and head bitmap is not zero then
24 generate a new barrier tag (the next in sequence, wrapping)
25 generate a new state from old state with with new tag
26 compare and swap old state with new state
27 if success then

// the barrier completed again before algorithm completed

28 restart algorithm
29 end
30 else
31 generate a new state from old state
32 count is decremented by one and syncing flag cleared
33 compare and swap old state with new state
34 if success then

// barrier completion

35 return
36 end
37 end
38 until barrier completion;
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3.14.5 Correctness

Interaction on the barrier structure occurs via the barrier state word, head bitmap and

barrier head pointers.

The state word is only updated using compare-and-swap or atomic increment op-

erations. This prevents any loss of state from concurrent updates. Execution of the

completion algorithm is controlled by the last synchronising process setting the sync-

ing flag. This is done via a compare-and-swap operation which will fail only if more

processes are enrolled; enrollment is the only possible concurrent operation at that

the point of barrier completion. The barrier tag is updated in the same operation as

the syncing flag maintaining its consistency. Barrier completion is mutually exclusive;

during barrier completion only enrollment, resignation and synchronisation operations

will take place.

The head bitmap is set atomically by logical processors performing synchronisation.

It is cleared atomically only by the logical processor performing completion. The same

is true of the barrier head pointers. As such each bitmap bit and head pointer is only

set by one logical processor and cleared by another. This produces a simple producer

consumer relationship. Each logical processor produces its head bitmap bit and head

pointer which are then consumed by the logical processor executing the completion

algorithm.

During completion the head bitmap is cleared before any processes are rescheduled,

hence there is no concurrent access. The head pointers have the barrier tag embedded

and attempts to rewrite the pointer (in the synchronisation algorithm) can detect when

it has not been cleared (by the completion algorithm). Overwrites from the synchroni-

sation algorithm undertake the action of the completion algorithm (rescheduling pro-

cesses). This allows the synchronisation algorithm to proceed ahead of the completion

algorithm. The completion algorithm only acts upon on head pointers with the appro-

priate tag. In this manner each barrier head data structure is only used by one logical

processor in each barrier phase and does not require further synchronisation.
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3.15 Evaluation

This section presents benchmark results evaluating and comparing the performance of

the modified occam-pi runtime. The source codes for these benchmarks are publicly

available [2].

3.15.1 Test Setup

All benchmarks were performed on an eight core Intel Xeon workstation composed

of two E5520 quad-core processors running at 2.26GHz. Each core has two hardware

threads and 256KiB of L2 cache, giving a total of 16 hardware threads and 2MiB L2

cache. Each processor also has 8MiB of L3 cache and an independent memory bus,

creating a non-uniform memory architecture when both cores from both processors are

used. For all tests the workstation ran Linux 3.2.0. Where appropriate, the taskset util-

ity and runtime flags were used to restrict the cores on which benchmarks ran. Unless

otherwise noted only one hardware thread was used per core, and cores in the same

processor were selected in preference to cores in separate processors. For example,

benchmark results for five cores will involve four cores from one processor and one

core from the other processor.

Comparison of results was performed by close reimplementation of the benchmarks

using multiple languages and concurrency frameworks:

• CCSP C – occam-pi runtime programmed using its C API.

• o-pi – occam-pi runtime programmed using occam-pi.

• o-pi – occam-pi runtime programmed using occam-pi compiled using LLVM (see

chapter 4).

• Erlang – see 2.5.11 4. Version 5.8.5 with HiPE [200] was used.

4Synchronised communication is not forced, but instead the benchmark designs are modified to func-
tion with asynchronous messaging. This should be a performance benefit for Erlang.



CHAPTER 3. SCHEDULING 190

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
el

at
iv

e 
Pe

ro
fo

rm
an

ce

Cores

Figure 35: Scaling performance of Mandelbrot set render with increasing numbers of
hardware threads.

• Go – see 2.5.13. Google Go version 1.1.1.

• Haskell – see 2.5.15. Light-weight threads and one-place buffered channels pro-

vided by the MVar primitive. GHC version 7.4.1 [123] was used.

• Java – see 2.5.17. Benchmarks use primitives from java.util.concurrent, in par-

ticular ArrayBlockingQueue. OpenJDK version 1.7.0 25 was used for compilation

and execution.

• pth C – POSIX threads accessed via the GNU C library, see 2.5.24. Mutual ex-

clusion (pthread_mutex_t) and condition variables (pthread_cond_t) are used to

construct one-place buffered communication channels.

3.15.2 Mandelbrot

In this first benchmark the coarse-grain scalability of the runtime is tested by calculating

iterations of the Mandelbrot set using a group of worker processes. The test calculates

128 frames or iterations. A central process farms out lines of each iteration to 128 worker

processes. The workers return the calculated image lines to the central process.



CHAPTER 3. SCHEDULING 191

Table 4: Communication times, calculated using process ring results.
Implementation 1-core (ns) CI 95% 8-core (ns) CI 95%
CCSP C 38 - 38 44 - 45
CCSP occam-pi 31 - 31 37 - 38
Erlang 460 - 461 478 - 484
Google Go 238 - 238 499 - 536
Haskell 382 - 386 43207 - 44907
Java 4728 - 4845 39060 - 41342
pthread C 2186 - 2195 18287 - 19473

Areas of the Mandelbrot set can be independently computed in parallel, hence exe-

cution speed should increase linearly as more processor cores are utilised. The results in

figure 35 show the modified runtime scheduler performs this parallelisation correctly.

In addition to enabling all cores, the results show further scaling to all hardware

threads. Surprisingly, the runtime scheduler is able to extract further parallelism from

these threads without any performance decrease. This suggests the hardware threads

are more computationally capable than expected.

3.15.3 Process Ring

To examine communication overheads, this test constructs a ring of n element processes,

and one initiator process. Element processes loop: they receive an integer token from

the previous process in the ring, increment it, then send it on to the next process. The

initiator adds tokens, counts them passing and after a given count removes them from

the ring. By increasing the number of tokens “in flight” around the ring, the number of

potentially concurrently executing processes is increased.

Given the time taken for a single token to circulate the ring an estimate of the mean

communication time of each language runtime can be computed as time÷ ((elements+

1) × roundtrips). For all examples, there are 255 element processes and tokens make

1024 round trips. With 255 elements it is likely that all processes will fit within the

processor caches, allowing the examination of the best-case communication time.
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Table 4 shows communication times in nanoseconds. These are based on the circu-

lation of a single token with one core or eight cores enabled.

The communication times for Erlang and the modified occam-pi runtime are rel-

atively unaffected by the number of processor cores. While both CCSP C and CCSP

occam-pi implementations use the same runtime, the occam-pi compiler caches schedul-

ing pointers in registers, reducing the kernel call overhead. This explains the small

difference in the results.

Google Go performance is impacted slightly by the addition of processor cores, but

is broadly comparable to Erlang. Java and POSIX threads see an order of magnitude

slow down with the addition of processor cores. Haskell performance degrades sig-

nificantly, two orders of magnitude, with the addition of cores. This reflects internal

contention exposed by multiple processors accessing the Haskell runtime in parallel.

The plot in figure 36 shows the time taken for 1024 circulations of 64 concurrent to-

kens as the number of processor cores is increased. With the exception of POSIX threads

and POSIX threads-based Java, all the implementations show decreased performance

with increasing numbers of cores. This reflects the fact that, for user processes, commu-

nicating between processor cores is more expensive than communication on the same

core. As the number of concurrent processes increases, they are scheduled on to sepa-

rate cores, increasing the communication costs. In particular, the NUMA aspects of the

system beyond four cores show up as a significant degradation of performance.

POSIX threads and Java performance are noticeably improved by more cores. This

then improves performance as interprocessor communication via processor caches is

faster than Linux’s context-switch.

While Erlang performance is stable, Haskell performance notably degrades with

increasing numbers of cores.

The modified occam-pi runtime, while not performing as in the optimal case (single-

core), does control the slow down with increasing numbers of cores. Performance is not

expected to degrade below interprocessor communication time.
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Figure 36: With 64 tokens in the process ring, increasing numbers of processor cores.

3.15.4 Agent Simulation

As previously mentioned, occam-pi is being used for complex systems modelling as

part of the CoSMoS project [3]. The investigators are exploring using process-oriented

methodologies for building models of emergent behaviour, and creating a generic toolkit

for doing so. One of the early models investigated by the group was a process-oriented

implementation of Craig Reynolds’ boids, a simulation of flocking behaviour [213]. The

CoSMoS project’s implementation, occoids, employs agent processes with internal con-

currency to implement the boids and their behaviour rules [35]. Agent processes move

through a grid of location processes, connecting and reconnecting as they go. The topol-

ogy of space can be modified by adjusting the underlying network connections, and

this technique has been exploited to build an implementation which spans a network
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Figure 37: Simplified occoids process network. Boxes represent concurrent processes.
Arrows represent two-way client-server channel connections, with the arrow pointing
at the server. Agent processes connect to their present location, and “see” other agents
via the location’s view.
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Figure 38: Increasing the number of cores applied to the agent simulation. The simula-
tion is a 10x10 grid with 1200 agent processes.
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Figure 39: Simulation time for agents benchmark with increasing grid size. Each grid
location has 12 initial agents. The x-axis is the number of locations in each axis.
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of computers with only minor changes to the code base.

This section uses a benchmark constructed to mimic the behaviour of occoids. This

benchmark is designed to be easy to implement in other languages, and produces re-

sults which allow the verification of an implementation’s correctness. The simulated

space is a two-dimensional torus and agent positions are represented as integers rela-

tive to the centre of their present location. The occoids simulation uses floating-point

variables so as not to unduly quantise space; however, integers allow reliable verifi-

cation of the simulation output and avoid any associated variations in floating-point

support.

With reference to the process diagram in figure 37, location processes, acting as

servers, maintain a data structure containing all agents presently in their grid area.

View processes act as servers to clients, but also as clients to the location processes,

building aggregate lists of all agents within nine adjacent locations each simulation

step. Agent processes query a view process, and calculate a repulsive force from other

visible agents, applying an internal bias. Having determined the force, the agent sig-

nals movement to its location, reconnecting to a new location if appropriate. Agents

maintain a consistent time step using barrier synchronisations between activity phases.

The bias is updated based on the position of the agent and the number of other

agents seen. In effect the bias produces randomised behaviour in the agents. The initial

position of all other agents in the simulation acts as the seed, and hence can be easily

reproduced.

As a comparison to the process-oriented design, a hand-optimised data parallel ver-

sion using POSIX threads was implemented. Only one thread is used per processor core

and each thread executes a fixed number of agents. Data updates are performed in par-

allel using fine-grain locking of location data structures. This version represents the

optimal case and appears as pthread DP C in figures 38 and 39.

Figure 38 shows comparative results with increasing numbers of available proces-

sor cores with a fixed-size world grid and number of agents. With reference to the

process-oriented implementations, the modified occam-pi runtime provides a marked
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improvement in performance and scalability. Haskell fails to achieve more than 50%

speed up, even with eight available processors. POSIX threads achieves approximately

a 150% speed up over eight cores, while the occam-pi runtime achieves 500%. Scalabil-

ity of the occam-pi runtime also outstrips the ideal POSIX threads solution over eight

cores.

Again, the NUMA nature of the architecture changes the performance profile of the

machine after four cores. This negatively effects the performance of all implementations

except those using the occam-pi runtime. This may be due to the heavy optimisation

for cache locality.

The overall performance of the C version using the occam-pi runtime is 50% of the

optimal case. Assuming this performance loss is communication and scheduling over-

head then further refinements of the CCSP scheduler and compiler integration should

be able to bring performance closer to the optimal case. The reduced performance of

occam-pi compared to C is due to more efficient optimisation of serial code by the GNU

C compiler than the occam-pi compiler. Techniques for overcoming this using LLVM

assembly are discussed in chapter 4.

Figure 39 shows results when scaling the simulation size with eight cores. Simula-

tion size is controlled by increasing the grid size and number of agents. In this test the

occam-pi runtime also outperforms other process-oriented implementations. The other

process-oriented implementations increasingly diverge from the optimal case with in-

creasing problem size. The similarity of the occam-pi runtime’s scaling curve to the

optimal suggests that refinement of this design may be sufficient to achieve near opti-

mal performance.

3.15.5 Performance Counters

To evaluate the underlying reasons for the performance shown in section 3.15.3 and 3.15.4

this section presents data gathered from hardware performance counters [144]. Of par-

ticular interest is whether the batch mechanism and associated heuristics are improving

cache utilisation. To assess this, results for the following counters are shown:
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• L1 dcache loads: the rate of loads from the L1 data cache.

• L1 dcache load misses: the rate of cache misses when loading from the L1 data cache.

• L1 dcache stores: the rate of stores to the L1 data cache.

• L1 dcache store misses: the rate of cache misses when storing to the L1 data cache.

• LLC loads: the rate of loads from the last-level cache (L3 in the test system).

• LLC load misses: the rate of cache misses loading from the last-level cache.

• LLC stores: the rate of stores to the last-level cache (L3 in the test system).

• LLC store misses: the rate of cache misses storing to the last-level cache.

For the counters used, a low rate of cache misses is desirable. Fewer cache misses

mean the given cache is being used more efficiently. This assumes that memory accesses

are occurring. Hence the rate of loads or stores to a given cache is also presented.

Figures 40, 41, 42 and 43 show counters for the process ring benchmark as in sec-

tion 3.15.3. There are 64-tokens circulating a ring of 1024 processes with increasing

numbers of active processor cores. In all cases results for the CCSP scheduler show

significantly lower rates of cache misses; despite, in many cases, having higher rates

of cache access. The lower rates of last-level cache access shown in figures 42 and 43

are reflective of higher hit rates in L1 and L2 caches. It is also worth noting that be-

yond four cores inter-processor communication significantly reduces the efficiency of

the last-level cache for all languages.

Figures 44, 45, 46 and 47 show counters for the agents benchmark as in section 3.15.4.

A fixed-size grid is used with increasing numbers of active processor cores. At L1 the

rate of cache loads and stores of C compiled code with the CCSP scheduler is broadly

similar to other languages. Code output from the occam-pi compiler is less efficient

and generates more loads and stores. While L1 cache miss rates are comparable to

languages such as Google Go and Erlang they are more stable with the addition of pro-

cessor cores. In particular, CCSP scheduler code has a lower rate of L1 store misses.



CHAPTER 3. SCHEDULING 199

Java and POSIX threads access rates decrease as synchronisation traffic impacts overall

performance.

At the last-level of cache all code using the CCSP scheduler is producing signifi-

cantly lower rates of loads, stores and associated cache misses. This indicates the effi-

ciency of L2 cache has been significantly improved (as last-level is L3). Again a phase

shift in last-level misses is observable at five or more processor cores.

Figures 48, 49, 50 and 51 also show counters for the agents benchmark. In this case

the number of processor cores is kept constant at eight and the grid size increased. For

these results a constant rate of loads, stores and associated misses is expected. Constant

rates indicate the cache is being used consistently independent of grid size. At L1 the

results broadly fit this pattern; however, at large grid sizes the rate of load misses for

the CCSP scheduler increases bring it into line with the performance of Google Go

or Erlang. Java and POSIX threads miss rates decrease with larger grid sizes. This

a reflection of reduced overall performance (more time spend context switching and

synchronising).

At the last-level of cache code using the CCSP scheduler is consistently out per-

forming comparable languages such as Google Go and Erlang. This reinforces earlier

observations of improved L2 cache performance. Java and POSIX threads have better

last-level cache performance than the CCSP scheduler. This performance is probably

indicative of a large amount of time spent in highly optimised process switching (ker-

nel) code and little time spent on benchmark execution as both have one or two orders

of magnitude worse performance with respect to benchmark execution time.

Overall the agents benchmark results show an approximate improvement in cache

utilisation by the CCSP scheduler of two to four times over comparable languages such

as Google Go and Erlang. This is directly comparable to the two to four times faster

execution of benchmark code in comparison to those languages.
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Figure 40: L1 data cache loads and load misses with 1024 element process ring and 64
tokens.
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Figure 41: L1 data cache stores and store misses with 1024 element process ring and 64
tokens.
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Figure 42: Last-level cache loads and load misses with 1024 element process ring and
64 tokens.
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Figure 43: Last-level cache stores and store misses with 1024 element process ring and
64 tokens.
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Figure 44: L1 data cache loads and load misses for agents benchmark with fixed grid
size and increasing numbers of active processor cores.
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Figure 45: L1 data cache stores and store misses for agents benchmark with fixed grid
size and increasing numbers of active processor cores.
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Figure 46: Last-level cache loads and load misses for agents benchmark with fixed grid
size and increasing numbers of active processor cores.
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Figure 47: Last-level cache stores and store misses for agents benchmark with fixed grid
size and increasing numbers of active processor cores.
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Figure 48: L1 data cache loads and load misses for agents benchmark with a variable
grid size and eight active processor cores.



CHAPTER 3. SCHEDULING 209

6.00 9.00 12.00 15.00 18.00 21.00
sqrt(grid size)

220

221

222

223

224

225

226

227

228

229

230

231

232

l1
 d

ca
ch

e
 s

to
re

s/
s

l1 dcache stores 8-core

CCSP C

Erlang

Go

Haskell

Java

o-pi

o-pi L

pth C

6.00 9.00 12.00 15.00 18.00 21.00
sqrt(grid size)

220

221

222

223

224

225

l1
 d

ca
ch

e
 s

to
re

 m
is

se
s/

s

l1 dcache store misses 8-core

CCSP C

Erlang

Go

Haskell

Java

o-pi

o-pi L

pth C

Figure 49: L1 data cache stores and store misses for agents benchmark with a variable
grid size and eight active processor cores.
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Figure 50: Last-level cache loads and load misses for agents benchmark with a variable
grid size and eight active processor cores.
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Figure 51: Last-level cache stores and store misses for agents benchmark with a variable
grid size and eight active processor cores.
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3.16 Conclusions

A multicore scheduler for fine-grain concurrent software developed using process-

oriented programming was designed and implemented. Process-oriented designs have

a high degree of interprocess communication and involve many more processes than

physical processors. This is addressed in the runtime design by ensuring that:

• The serialisation bottleneck of a global run-queue is avoided by scheduling pro-

cesses independently on each core.

• Cache utilisation is improved by batching communicating processes.

• No programmer intervention is required to achieve multicore execution of process-

oriented designs. Processes and batches are automatically distributed and mi-

grated between processor cores.

• Contention within the scheduler is reduced using lock-free and wait-free algo-

rithms.

• Lock-free algorithm performance is optimised by minimising the number of atomic

instructions, particularly in hot paths.

The performance results presented here show that by addressing these points a

modified occam-pi runtime has significantly better performance than a number of other

frameworks for implementing process-oriented designs. Specially, the occam-pi run-

time brings the performance of process-oriented software close to that of optimised

multithreaded implementations. Using this runtime design, process-oriented design

can be applied to develop software for multicore systems without the associated com-

plexities and hazards of threads, locks and shared-memory. Furthermore, refinements

to this design should allow unmodified process-oriented software to fully utilise hard-

ware parallelism in future generations of multicore processors (chapter 6) [176, 24, 250,

166].



Chapter 4

Compilation

This chapter presents a new intermediate representation of occam-pi programs using

platform-independent LLVM assembly and continuation passing style. The LLVM as-

sembly is derived through translation of extended transputer code [205]. Work in this

chapter has been previously published as [217].

4.1 Motivation

The original occam language toolchain supported a single processor architecture, that

of the INMOS Transputer [189, 139]. Following INMOS’s decision to end development

of the occam language, the sources for the compiler were released to the occam For All

(oFA) project [204]. The oFA project modified the INMOS compiler (occ21), adding

support for processor architectures other than the Transputer, and developed the basis

for today’s Kent Retargetable occam Compiler (KRoC) [7].

Figure 52 shows the various compilation steps for an occam or occam-pi program.

The occ21 compiler generates Extended Tranputer Code (ETC) [205], which targets a

virtual Transputer processor. Another tool, tranx86 [47], generates a machine object

from the ETC for a target architecture. This is in turn linked with the runtime kernel

213
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CCSP which has been modified with multiprocessor support (see chapter 3) and other

system libraries.

Tools such as tranx86, octran and tranpc [261] have in the past provided support for

Intel x86, MIPS, PowerPC and Sparc architectures; however, with the progressive devel-

opment of new features in the occam-pi language, only Intel x86 support is well main-

tained. This is a consequence of the development time required to maintain support

for a large number of hardware/software architectures. In recent years the Transter-

preter Virtual Machine (TVM), which executes linked ETC bytecode directly, has pro-

vided an environment for executing occam-pi programs on architectures other than

Intel x86 [147, 146]. This has been possible due to the small size of the TVM codebase,

and its implementation in architecture independent ANSI C. Portability and maintain-

ability are gained at the sacrifice of execution speed; a program executed in the TVM

runs around 100 times slower its equivalent tranx86 generated object code.

This chapter describes a new translation for ETC bytecode, from the virtual Trans-

puter instruction set to the LLVM virtual instruction set [158, 10]. The LLVM compiler

infrastructure project provides a machine independent virtual instruction set, along

with tools for its optimisation and compilation to a wide range of machine architec-

tures. By targeting a virtual instruction set that has a well developed set of platform

backends, the aim is to increase the number of platforms the existing occam-pi compiler

framework can target. LLVM also provides a pass-based framework for optimisation at

the assembly level, with a large number of pre-written optimisation passes (e.g. dead-

code removal, constant folding, etc). Translating to the LLVM instruction set provides

access to these ready-made optimisations as opposed to writing custom optimisations

within the KRoC toolchain as has been done in the past [47].

The virtual instruction sets of the Java Virtual Machine (JVM) or the .NET’s Com-

mon Language Runtime (CLR) have also been used as portable compilation targets [131,

229]. Unlike LLVM these instruction sets rely on a virtual machine implementation and

do not provide a clear path for linking with the CCSP runtime. This was a key moti-

vating factor in choosing LLVM over the JVM or CLR as a new portable compilation
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Figure 52: Flow through the KRoC and Transterpreter toolchains, from source to pro-
gram execution. This paper covers developments in the grey box.

mechanism for occam-pi.

An additional concern regarding the JVM and CLR is that large parts of their code

bases are concerned with language features not relevant for occam-pi, e.g. class loading

or garbage collection. Given that occam-pi is desirable for programming small embed-

ded devices (4.4.7) [146], it seems appropriate not to be encumbered with a large virtual

machine. LLVM’s increasing support for embedded architectures, XMOS’s XCore pro-

cessor in particular [173], provided a further motivation to choose it over the JVM or

CLR.

4.2 LLVM

This section briefly describes the LLVM project’s infrastructure and its origins. Addi-

tionally, it contains an introduction to LLVM assembly language as an aid to under-

standing the translation examples in later sections.

Lattner proposed the LLVM infrastructure as a means of allowing optimisation of

a program not just at compile time, but throughout its lifetime [158]. This includes
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define i32 @cube (i32 %x) {
%sq = mul i32 %x, %x ; multiply x by x
%cu = mul i32 %sq, %x ; multiply sq by x
ret i32 %cu ; return cu

}

Figure 53: Example LLVM function which raises a value to the power of three.

optimisation at compile time, link time, runtime and offline optimisation. Offline opti-

misations may tailor a program for a specific system, or perhaps apply profiling data

collected from previous executions.

The LLVM infrastructure consists of a virtual instruction set, a bytecode format for

the instruction set, front-ends which generate bytecode from sources (including assem-

bly), a virtual machine and native code generators for the bytecode. Having compiled

a program to LLVM bytecode it is then optimised before being compiled to native ob-

ject code or JIT compiled in the virtual machine interpreter. Optimisation passes take

bytecode (or its in-memory representation) as input, and produce bytecode as output.

Each pass may modify the code or simply insert annotations to influence other passes,

e.g. usage information.

The LLVM assembly language is strongly typed, and uses static single-assignment

(SSA) form. It has neither machine registers nor an operand stack, rather identifiers are

defined when assigned to, and this assignment may occur only once. Identifiers have

global or local scope; the scope of an identifier is indicated by its initial character. The

example in figure 53 shows a global function @cube which takes a 32-bit integer (given

the local identifier %x), and returns it raised to the power of three. This example also

highlights LLVM’s type system, which requires all identifiers and expressions to have

explicitly specified types.

LLVM supports the separate declaration and definition of functions: header files

declare functions, which have a definition at link time. The use of explicit functions, as

opposed to labels and jump instructions, frees the programmer from defining a calling

convention. This in turn allows LLVM code to transparently function with the calling
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conventions of multiple hardware and software application binary interfaces (ABIs).

In addition to functions, LLVM provides a restricted form of traditional labels. It is

not possible to derive the address of an LLVM label or assign a label to an identifier.

Furthermore the last statement of a labelled block must be a branching instruction, ei-

ther to another label or a return statement. These restrictions give LLVM optimisations

a well-defined view of program control flow, but do present some interesting challenges

(4.3.2).

In the examples presented here, where appropriate, LLVM syntax is commented;

however, for a full definition of the LLVM assembly language please refer to the project’s

website and reference manual [9].

4.3 ETC to LLVM Translation

This section describes the key steps in the translation of stack-based Extended Trans-

puter Code (ETC) to the SSA-form LLVM assembly language.

4.3.1 Stack to SSA

ETC bases its execution model on that of the Transputer, a processor with a three reg-

ister stack. A small set of instructions have coded operands, but the majority consume

(pop) operands from the stack and produce (push) results to it. A separate data stack

called the workspace (3.7) provides the source or target for most load and store opera-

tions.

Blind translation from a stack machine to a register machine can be achieved by

designating a register for each stack position and shuffling data between registers as

operands are pushed and popped. The resulting translation is not particularly efficient

as it has a large number of register-to-register copies. More importantly, this form of

blind translation is not possible with LLVM’s assembly language as identifiers (regis-

ters) cannot be reassigned. Instead the stack activity of instructions must be traced,
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LDC 0 ; load constant 0
LDL 0 ; load workspace location 0
LDC 64 ; load constant 64
CSUB0 ; assert stack 1 < stack 0, and pop stack
LDLP 3 ; load a pointer to workspace location 3
BSUB ; subscript stack 0 by stack 1
SB ; store byte in stack 1 to pointer stack 0

Figure 54: Example ETC which stores a 0 byte to an array. The base of the array is
workspace location 3, and offset to be written is stored in workspace location 0.

LDC 0 ; () => (reg 1) STACK = <reg 1>
LDL 0 ; () => (reg 2) STACK = <reg 2, reg 1>
LDC 64 ; () => (reg 3) STACK = <reg 3, reg 2, reg 1>
CSUB0 ; (reg 3, reg 2) => (reg 2) STACK = <reg 2, reg 1>
LDLP 3 ; () => (reg 4) STACK = <reg 4, reg 2, reg 1>
BSUB ; (reg 4, reg 2) => (reg 5) STACK = <reg 5, reg 1>
SB ; (reg 5, reg 1) => () STACK = <>

Figure 55: Tracing the stack utilisation of the ETC in figure 54, generating a register for
each unique operand.

creating a new identifier for each operand pushed and associating it with each subse-

quent pop or reference of that operand. This is possible as all ETC instructions consume

and produce constant numbers of operands.

The process of tracing operands demonstrates one important property of SSA, its

obviation of data dependencies between instructions. Figures 54, 55 and 56 show re-

spectively: a sample ETC fragment, its traced form and a data flow graph derived from

the trace. Each generated identifier is a node in the data flow graph connected to nodes

for its producer and consumer nodes. From the example it can be seen that only the SB

instruction depends on the first LDC, therefore it can be reordered to any point before

the SB, or in fact constant folded. This direct mapping to the data flow graph represen-

tation, is what makes SSA form desirable for pass-based optimisation.

The Transputer has a two stacks, the standard operand stack and the floating point

operand stack. The tracing process is applied to both. A data structure in the translator

provides the number of input and output operands for each instruction. Additionally,
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Figure 56: Data flow graph generated from the trace in figure 55.
.

modifications to the workspace register are traced and it is redefined as required.

Registers from the operand stack are typed as 32-bit integers (i32), and operands on

the floating point stack as 64-bit double precision floating point numbers (double). The

workspace pointer is an integer pointer (i32∗). When an operand is used as a memory

address it is cast to the appropriate pointer type. In theory, these casts may hinder

certain kinds of optimisations, but in practice no difference in behaviour is observed.

4.3.2 Process Representation

While the programmer’s view of occam is one of all processes executing in parallel, this

model is in practice simulated by one or more threads of execution moving through the

concurrent processes. The execution flow may leave processes at defined instructions,

reentering at the next instruction. The state of the operand stack after these instructions

is undefined. Instructions which deschedule the process, such as channel communica-

tion or barrier synchronisation, are implemented as calls to the runtime kernel (CCSP)

(see chapter 3). In a low-level machine code generator such as tranx86, the generator is

aware of all registers in use and ensures that their state is not assumed constant across

a kernel call. Take the example in figure 57; there is a risk the code generator may

choose to remove the second load of workspace offset 1, and reuse the register from
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; load workspace offset 1
%reg 1 = load i32∗ (getelementptr i32∗ %wptr 1, i32 1)
; add 1
%reg 2 = add i32 %reg 1, 1
; store result to workspace offset 2
store i32 %reg 2, (getelementptr i32∗ %wptr 1, i32 2)

; load workspace offset 3
%reg 3 = load i32∗ (getelementptr i32∗ %wptr 1, i32 3)
; synchronise barrier
call void kernel barrier sync (%reg 3)

; load workspace offset 1
%reg 4 = load i32∗ (getelementptr i32∗ %wptr 1, i32 1)
; add 2
%reg 5 = add i32 %reg 4, 2
; store result to workspace offset 2
store i32 %reg 5, (getelementptr i32∗ %wptr 1, i32 2)

Figure 57: LLVM code example which illustrates the dangers of optimisation across
kernel calls.

the first load. However the value of this register may have been changed by another

process which is scheduled by the kernel before execution returns to the process in the

example.

While the system ABI specifies which registers should be preserved by the callee if

modified, the kernel does not know which registers will be used by other processes it

schedules. If the kernel is to preserve the registers then it must save all volatile regis-

ters when switching processes. This requires space to be allocated for each process’s

registers, something the occam compiler does not do as the instruction it generated

was clearly specified as to undefine the operand stack. More importantly, the code to

store a process’s registers must be rewritten in the system assembly language for each

platform to be supported. Given a goal of minimal maintenance portability this is not

acceptable.

The solution is to break down monolithic processes into sequences of uninterrupt-

able functions which pass continuations [214]. Control flow is then restricted such that

it may only leave or enter a process at the junctures between its component functions.
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g1 g2 gm
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Figure 58: Execution of the component functions of processes A and B is interleaved by
the runtime kernel.

The functions of the process are then mapped directly to LLVM function definitions,

which gives LLVM an identical view of the control flow to that of the internal repre-

sentation. LLVM’s code generation backends will then serialise state at points where

control flow may leave the process. Figure 58 gives a graphical representation of this

process, as the runtime kernel interleaves the functions f1 to fn of process A with g1 to

gm of process B.

In practice the continuation is the workspace (Wptr), with the address of the next

function to execute stored at Wptr[Iptr] (see 3.7). This is very similar to the Trans-

puter’s mechanism for managing blocked processes, except the stored address is a func-

tion and thus the dispatch mechanism is not a jump, but a call. Thus the dispatch of a

continuation (Wptr) is the tail call: Wptr[Link] (Wptr).

The dispatch of continuations is handled by generated LLVM assembly. Kernel calls

return the next continuation as selected by the scheduler, which is then dispatched by

the caller. This removes the need for system specific assembly instructions in the kernel

to modify execution flow, and thus greatly simplifies the kernel implementation. The

runtime kernel can then be implemented as a standard system library as its ABI is now

consistent with the rest of the system. This contrasts with the compiler toolchain as de-

fined in section 3.5. The call table is entirely removed; this enhances branch prediction

as an indirect branch can be replaced with a direct one.
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; Component function of process "kroc.screen.process"
define private fastcc void @O kroc screen process L0.3 0

(i8∗ %sched, i32∗ %wptr 1) {
; ... code omitted ...

; Build continuation
; tmp 6 = pointer to workspace offset −1
%tmp 6 = getelementptr i32∗ %wptr 1, i32 −1
; tmp 7 = pointer to continuation function as byte pointer
%tmp 7 = bitcast void (i8∗, i32∗)∗ @O kroc screen process L0.3 1 to i8∗
; tmp 8 = tmp 7 cast to an 32−bit integer
%tmp 8 = ptrtoint i8∗ %tmp 7 to i32
; store tmp 8 (continuation function pointer) to workspace offset −1
store i32 %tmp 8, i32∗ %tmp 6

; Make kernel call
; The call parameters are reg 8, reg 7 and reg 6
; The next continuation is return by the call as tmp 9
%tmp 9 = call i32∗ @kernel Y in

(i8∗ %sched, i32∗ %wptr 1,
i32 %reg 8, i32 %reg 7, i32 %reg 6)

; Dispatch the next continuation
; tmp 10 = pointer to continuation offset −1
%tmp 10 = getelementptr i32∗ %tmp 9, i32 −1
; tmp 12 = pointer to continuation function cast as 32−bit integer
%tmp 12 = load i32∗ %tmp 10
; tmp 11 = pointer to continuation function
%tmp 11 = inttoptr i32 %tmp 12 to void (i8∗, i32∗)∗
; tail call tmp 11 passing the continuation (tmp 9) as its parameter
tail call fastcc void %tmp 11 (i8∗ %sched, i32∗ %tmp 9) noreturn
ret void

}

; Next function in the process "kroc.screen.process"
define private fastcc void @O kroc screen process L0.3 1

(i8∗ %sched, i32∗ %wptr 1) {
; ... code omitted ...

}

Figure 59: LLVM code example is actual output from the translation tool showing a
kernel call for channel input. This demonstrates continuation formation and dispatch.
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Figure 59 shows the full code listing of a kernel call generated by translation. Two

component functions of a process kroc.screen.process are shown (see section 4.3.5

for more details on function naming). The first constructs a continuation to the second,

then makes a kernel call for channel input and dispatches the returned continuation.

4.3.3 Calling Conventions

When calling a process as a subroutine, the present process function is split and a tail

call made to the callee passing a continuation to the newly created function as the return

address. This process is essentially the same as the Transputer instructions CALL and

RET. There are are however some special cases which must be addressed.

The occam language has both processes (PROC) and functions (FUNCTIONS). Pro-

cesses may modify their writable (non-VAL) parameters, interact with their environ-

ment through channels and synchronisation primitives, and go parallel creating con-

current subprocesses. Functions on the other hand may not modify their parameters

or perform any potentially blocking operations or go parallel, but may return values

(processes do not return values).

While it is possible to implement occam’s pure functions in LLVM using the normal

call stack, the translation presented here does not address this. Instead function calls

are treated as process calls. Function returns are then handled by rewriting the return

values into parameters to the continuation function.

The main obstacle to supporting pure functions is that the occ21 compiler lowers

functions to processes; this obscures functions in the resulting ETC output. It also

allows some kernel operations (e.g. memory allocation) within functions. Hence to

provide pure function support, the translation tool must reconstruct functions from

processes, verify their purity, and have separate code generation paths for process and

functions. Such engineering is excessive for unknown gains, although as the LLVM

optimiser is likely to provide more effective inlining and fusion of pure functions it is

an area for further work. In particular, the purity verification stage in such a translator

should also be able to lift processes to functions, further improving code generation.
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Another area affected by LLVM translation is the Foreign Function Interface (FFI).

The FFI allows occam programs to call functions implemented in other languages, such

as C [265, 96]. This facility is used to access the system libraries for file input and output,

networking and graphics. The KRoC code generator (tranx86) must generate not only

hardware specific assembly, but structure the call to conform to the operating system

specific ABI. LLVM greatly simplifies the FFI call process as it abstracts away any ABI

specific logic. Hence foreign functions are implemented as standard LLVM calls in the

translator.

4.3.4 Branching and Labels

The Transputer instruction set has a relatively small number of control flow instruc-

tions:

• CALL call subroutine (and a general call variant - GCALL),

• CJ conditional jump,

• J unconditional jump,

• LEND loop end (form of CJ which uses a counting block in memory),

• RET return from subroutine.

Sections 4.3.2 and 4.3.3 addressed the CALL and RET related elements of translation.

This section addresses the remaining branching instructions.

The interesting aspect of the branching instructions J and CJ are their impact on the

operand stack. An unconditional jump undefines the operand stack; this allows a pro-

cess to be descheduled on certain jumps, which provided a preemption mechanism for

long running processes on the Transputer. The conditional jump instruction branches

if the first element of the operand stack is zero; in doing so it preserves the stack. If it

does not branch then it instead pops the first element of the operand stack.
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As part of operand tracing during the conversion to SSA-form (4.3.1), each label

encountered within a process is tagged with the present stack operands. For the pur-

poses of tracing, unconditional jumps undefine the stack and conditional jumps con-

sume the entire stack outputting stackdepth− 1 new operands. Having traced the stack

the inputs of each label are compared with the inferred inputs from branch instructions

which reference it and behaviour is adjusted as required These adjustments can occur,

for example, when the target of a conditional jump does not require the entire operand

stack. While the compiler outputs additional stack depth information this is not always

sufficient, hence the introduction of an additional verification stage.

The SSA syntax of LLVM’s assembly language adds some complication to branching

code. When a label is the target of more than one branching instruction, φ nodes (phi

nodes) must be introduced for each identifier which is dependent on the control flow.

Figure 60 illustrates the use of φ nodes in a contrived code snippet generating 1/n,

where the result is 1 when n = 0. The φ node selects a value for %fraction from

the appropriate label’s namespace, acting as a merge of values in the data flow graph.

During translation the operand stack information generated for each label is used to

build appropriate φ nodes for labels which are branch targets. Unconditional branch

instructions are then added to connect these labels together, as LLVM’s control flow

does not automatically transition between labels.

Transputer bytecode is by design position independent; the arguments passed to

start process instructions, loop ends and jumps are offsets from the present instruction.

To support these offsets the occam compiler specifies the instruction arguments as label

differences, i.e. Lt − Li where Lt is the argument’s target label and Li is a label placed

before the instruction consuming the jump offset. While these differences can be re-

verted to absolute label reference by removing the subtraction of Li, LLVM assembly

does not permit the derivation of label addresses.

The inability to derive the address of a label prevents the passing of labels as argu-

ments to kernel calls such as start process (STARTP). This is overcome by lifting labels,

for which the address is required, to function definitions. This is achieved by splitting
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; Compare n to 0.0
%is zero = fcmp oeq double %n, 0.0
; Branch to the correct label
; zero if is zero = 1, otherwise not zero
br i1 %is zero, label %zero, label %not zero

zero:
; Unconditionally branch to continue label
br label %continue

not zero:
; Divide 1 by n
%nz fraction = fdiv double 1.0, %n
; Unconditionally branch to continue label
br label %continue

continue:
; fraction depends on the source label:
; 1.0 if the source is zero
; nz fraction if the source is not zero
%fraction = phi double [ 1.0, %zero, %nz fraction, %not zero ]

Figure 60: Example LLVM code showing the use of a phi node to select the value of the
fraction identifier.

the process in the same way as is done for kernel calls (4.3.2). Adjacent labels are then

connected by tail calls with the operand stack passed as parameters. There is no need

to build continuations for these calls as control flow will not leave the process. Addi-

tionally, φ nodes are not required as the passing of the operand stack as parameters

provides the required renaming.

As an aside, early verions of the translation process lifted all labels to function def-

inition to avoid the complexity of generating φ nodes, and avoid tracking the use of

labels as arguments. While it appeared that LLVM’s optimiser was able to fuse many of

these processes back together, a layer of control flow was being obscured. In particular

this created output which was often hard to debug. Hence, it is desirable to only lift

labels when required.
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4.3.5 Symbol Naming

While LLVM allows a wide range of characters in symbol names, the generation of

symbol names for processes is consistent with that used in tranx86 [47]. Characters not

valid for a C function are converted to underscores, and a O prefix added. This allows

ANSI C code to manipulate occam process symbols by name.

Only processes marked as global by the compiler are exported, and internally gen-

erated symbols are marked as private and tagged with the label name to prevent in-

ternal collisions. Declaration declare statements are added to the beginning of the

assembly output for all processes referenced within the body. These declarations may

include processes not defined in the assembly output; however, these will have been

validated by the compiler as existing in another ETC source. The resulting output can

then be compiled to LLVM bytecode or system assembly and the symbols resolved by

the LLVM linker or the system linker as appropriate.

4.3.6 Arithmetic Overflow

An interesting feature of the occam language is that its standard arithmetic opera-

tions check for overflow and trigger an error when it is detected. In the ANSI C

TVM emulating these arithmetic instructions requires a number of additional logic

steps and calculations [146]. This is inefficient on CPU architectures which provide

flags for detecting overflow. The LLVM assembly language does not provide access

to the CPU flags, but instead provides intrinsics for addition, subtraction and mul-

tiplication with overflow detection. These intrinsics (@llvm.sadd.with.overflow,

@llvm.ssub.with.overflow and @llvm.smul.with.overflow) can be used to effi-

ciently implement the instructions ADD, SUB and MUL.

4.3.7 Floating Point

The occam language supports a wide range of IEEE floating-point arithmetic and pro-

vides the ability to set the rounding mode in number space conversions. While an
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emulation library exists for this arithmetic, a more efficient hardware implementation

is present in later Transputers and this translator. However, LLVM lacks support for

setting the rounding mode of the floating point unit. The LLVM assembly language

specification defines all the relevant instructions to truncate their results. While not

ideal, this truncation can be used by adding or subtracting 0.5 before converting a value

in order to simulate nearest rounding. While plus and minus rounding modes are de-

fined by convention the occ21 compiler never generates instructions for these so do not

need to be supported.

It can be observed that the occ21 compiler only ever generates a rounding mode

change instruction directly prior to a conversion instruction. Thus instead of gener-

ating LLVM code for the mode change instruction the translation tags the proceeding

instruction with the new mode. Hence mode changes become static at the point of

translation and can be optimised by LLVM.

4.4 Analysis

In this section contains benchmark results comparing the output of the existing tranx86

ETC converter to the output of the new translation tool passed through LLVM’s opti-

miser (opt) and native code generator (llc). These benchmarks were performed using

source code as-is from the KRoC subversion repository revision 6002 1, with the excep-

tion of the mandelbrot benchmark from which the frame rate limiter was removed.

LLVM version 2.7 was used with the following optimisations:

• constmerge and constprop to merge and simplify constants

• mergefunc merge functions

• die dead instruction elimination

• dce dead code elimination

1http://projects.cs.kent.ac.uk/projects/kroc/trac/log/kroc/trunk?rev=6002

http://projects.cs.kent.ac.uk/projects/kroc/trac/log/kroc/trunk?rev=6002
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• scalar-evolution scalar evolution analysis

• lcssa loop dependence analysis

• memcpyopt memory copy optimisation

• mem2reg promote memory to registers

• ipconstprop inter-procedural constant propagation

• dse dead store elimination

• globalopt global variable optimiser

• break-crit-edges break critical edges

• loop-deletion delete dead loops

• loopsimplify canonicalize natural loops

• jump-threading jump threading

• libcall-aa libcall alias analysis

• simplify-libcalls simplify well-known library calls

• simplifycfg simplify control flow graph

Table 5 shows the wall-clock execution times of the various benchmarks. All our

benchmarks were performed on an eight core Intel Xeon workstation composed of two

E5320 quad-core processors running at 1.86GHz. Pairs of cores share 4MiB of L2 cache,

giving a total of 16MiB L2 cache across eight cores.

4.4.1 agents

The agents benchmark was developed to compare the performance of the CCSP runtime

to that of other language runtimes (see section 3.15.4). The amount of computation in-

creases greatly with the density of agents and hence two variants were run for compari-

son: one with 32 initial agents per grid tile on an eight by eight grid, giving 2048 agents,



CHAPTER 4. COMPILATION 230

Table 5: Benchmark execution times, comparing tranx86 and LLVM based compilations.
Confidence interval of 95%.

Benchmark tranx86 (s) CI 95% LLVM (s) CI 95%
Difference
(tranx86→ LLVM)

agents 8 32 17.50 - 17.55 15.97 - 16.00 -9%
agents 8 64 62.49 - 62.56 56.38 - 56.47 -10%
fannkuch 1.272 - 1.272 1.315 - 1.316 +3%
fasta 6.236 - 6.241 6.646 - 6.712 +6%
mandelbrot 17.54 - 17.54 7.120 - 7.381 -58%
ring 250000 2.994 - 3.020 3.945 - 3.981 +31%
spectralnorm 22.96 - 22.97 13.56 - 14.23 +38%

and the other with double the density at 4096 agents on the same size grid. A marginal

performance improvement can be seen in the LLVM version of this benchmark. This

can be attributed to LLVM’s aggressive optimisation of the computation loops.

4.4.2 fannkuch

The fannkuch benchmark is based on a version from The Computer Language Benchmarks

Game [13, 33]. The source code involves a large numbers of reads and writes to relatively

small arrays of integers. A small decrease in performance can be seen in the LLVM

version of this benchmark. This may be the result of tranx86 generating a more efficient

instruction sequence for array bounds checking.

4.4.3 fasta

The fasta benchmark is also taken from The Computer Language Benchmarks Game. A set

of random DNA sequences is generated and output, this involves array accesses and

floating-point arithmetic. Again, like fannkuch, a negligible decrease in performance

can be seen and again this can be attributed to array bounds checks.
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4.4.4 mandelbrot

As used in section 3.15.2, the occam-pi implementation of the mandelbrot set generator

in the ttygames source directory was modified to remove the frame rate limiter and

used this as a benchmark. The implementation farms lines of the mandelbrot set image

to 32 worker processes for generation, and buffers allow up to eight frames to be con-

currently calculated. The complex number calculations for the mandelbrot set involve

large numbers of floating point operations, and this benchmark demonstrates a vast

improvement in LLVM’s floating-point code generator over tranx86. FPU instructions

are generated by tranx86, whereas LLVM generates SSE instructions; the latter appear

to be more efficient on modern x86 processors. Additionally, by tracking the rounding

mode at the source level (4.3.7) the need to generate FPU mode change instructions is

removed. These instructions may disrupt FPU pipelining in tranx86 generated code.

4.4.5 ring

Another CCSP comparison benchmark (see 3.15.3). This benchmark sets up a ring of

256 processes. Ring processes receive a token, increment it, and then forward it on

to the next ring node. The benchmarks here time 250000 iterations of the ring, giving

64000000 independent communications. This allows calculation of the communication

times (based on upper bound) of the tranx86 and LLVM implementation at 47ns and

62ns respectively. The increased communication time can be attributed to the additional

instructions required to unwind the stack when returning from kernel calls in the LLVM

implementation. The tranx86 version of CCSP does not return from kernel calls (it

dispatches the next process internally).

4.4.6 spectralnorm

The final benchmark from The Computer Language Benchmarks Game. This benchmark

calculates the spectral norm of an infinite matrix. Matrix values are generated using

floating-point arithmetic by a function which is called from a set of nested loops. The
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Table 6: Binary text section sizes, comparing tranx86 and LLVM based compilations.

Benchmark tranx86 (bytes) LLVM (bytes) Difference (tranx86→ LLVM)
agents 16410 36715 +124%
fannkuch 3702 5522 +49%
fasta 5134 10494 +104%
mandelbrot 6098 12865 +111%
ring 3453 6716 +94%
spectralnorm 4065 6318 +55%

significant performance reduction with LLVM can be attributed to its excessive inlining

causing cache overloads negating the impact of potentially more efficient floating-point

code generation. This suggest some revision of optimisations is required.

4.4.7 Code Size

Table 6 shows the size of the text section of the benchmark binaries. It can be seen

that the LLVM output is typically twice the size of the equivalent tranx86 output. It is

surprising that this increase in binary size does not adversely affect performance; in-

creased binary size potentially reduces cache space available for program data. As an

experiment the −code−model=small option was passed to LLVM’s native code gen-

erator; however, this made no difference to binary size. Some of the increase in binary

size may be attributed to the continuation dispatch code which is inlined within the

resulting binary, rather than as part of the runtime kernel as with tranx86. The fannkuch

and spectralnorm benchmarks make almost no kernel calls, therefore contain very few

continuation dispatches, and accordingly show the least growth. Another possibility

is LLVM aggressively aligning instructions to increase performance. The increase in

binary size is of concern when targeting memory constrained embedded devices.

4.4.8 Summary

Figure 61 shows the combined results for speed up and binary size growth. Code size

growth is very consistent. Performance is boosted significantly when floating point
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Figure 61: Overview of performance speed up and binary size growth with LLVM com-
pilation.

computation is involved. Communication time is marginally increased, this hurts the

communication only benchmark ring, but not catastrophically. However, the agents

benchmark which has a high degree of process communication and no floating point

computation still shows a speed up suggesting overall optimisation is good. The origi-

nal occoids program uses floating point so is likely to see further performance increases.

4.5 Conclusions

This work has demonstrated the feasibility of translating the ETC output of the present

occam-pi compiler into the LLVM project’s assembly language. With associated changes
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to the runtime kernel this work provides a means of compiling occam-pi code for plat-

forms other than Intel x86. This can also be seen as a stepping stone on the path to di-

rect compilation of occam-pi using LLVM assembly as part of a new compiler, such as

Tock [14]. In particular, viable representations of processes and a kernel calling conven-

tion have been established, both fundamental details of any compiled representation of

occam-pi and other process-oriented languages.

The performance of LLVM translations compares favourably with benchmarks of

the modified KRoC runtime using tranx86 (4.4). While the LLVM kernel call mecha-

nism is approximately 10% slower, loop unrolling enhancements and dramatically im-

proved float-point performance offset this overhead. Typical applications are a mix of

communication and computation, which should help preserve this balance. The occ21

compiler’s memory bound model of compilation presents an underlying performance

bottleneck to translation based optimisations. This is a legacy of the Transputer’s lim-

ited number of stack registers.

Aside from the portability aspects of this work, access to an LLVM representation

of occam-pi programs opens the door to exploring concurrency specific optimisations

within an established optimisation framework. Interesting optimisations, such as fus-

ing parallel processes using vector instructions and removing channel communications

in linear pipelines (see section 6.3), could be implemented as LLVM passes. LLVM’s

bytecode has also been used for various forms of static verification, a similar approach

many be able to verify aspects of a compiled occam-pi program such as the safety of its

access to mobile data. LLVM’s assembly language may benefit from a representation

of concurrency, particularly for providing information to concurrency related optimi-

sations. Recent research has begun targeting this area [97].
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Introspection

This chapter looks at how a runtime for a process-oriented language, in this case occam-

pi, can support low-level introspection of execution as a means for building debugging

and visualisation tools. The goal of this work is to investigate how runtime support

can be used to facilitate introspective debugging where concurrent components ob-

serve and interact with other concurrent components. Work in this chapter has been

previously published as [221].

5.1 Motivation

While a program may be correct by design, as long as there remains a gap between that

design and its implementation then an opportunity exists for errors to be introduced. In

the ideal world our implementations would be automatically verified against higher-

level specifications of our designs, but despite much work in the area, such checking is

not yet supported for all cases. Hence support for finding and fixing errors is essential

to the rapid development of large-scale and complex applications. Debugging is the

process of locating, analyzing, and correcting suspected errors [178].

235
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The Kent Retargetable occam-pi Compiler (KRoC) supports basic post-mortem de-

bugging [266], which gives the developer access to the last executed line and process

call at the time a fatal error such as integer overflow or array bounds violation is de-

tected. This provides the developer with a starting point for debugging and assists with

the correction of many trivial errors; however, it does not elucidate the, often complex,

interactions which lead up to application failure, nor does it provide any assistance for

non-fatal errors. The work presented in this chapter is an extension of earlier work and

is aimed at providing the developer with uniform and accessible tracing and replay

facilities for occam-pi applications.

Without any explicit debugging support developers must implement their own trac-

ing support. This typically takes the form of a shared messaging channel along which

component processes emit their status. The programmer writes “print” commands into

critical sections of the application and then views the trace output. Concurrency, how-

ever, creates many issues for this debugging approach. Buffering on the messaging

channel or the presence of multiple threads of execution will cause the trace output to

deviate from the actual execution flow of the application. This hinders the detection of

errors in the interaction between processes. In turn, the introduction of the messaging

channel itself, a new shared resource on which component processes synchronise, sub-

tly changes the scheduling behaviour of the program obscuring race condition related

faults. This is often call the probe effect and it is further defined in section 5.6.1.

This chapter briefly reviews previous work in the field of parallel application de-

bugging, and more specifically the debugging of occam programs (section 5.2). Fol-

lowing on a new method for run-time monitoring of occam-pi applications is intro-

duced. This is based on the Transterpreter [147] virtual machine interpreter. Section 5.4

describes how virtual machine instances can interact with the interpreter to intercede

on each other’s execution. This allows an occam-pi process to mediate the execution

of another occam-pi program, a model which bears similarities to that applied in de-

bugging embedded systems with a JTAG connection [15]. A new extensible bytecode

format which provides access to debugging information is detailed in section 5.5. In
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section 5.6 additional run-time debugging support is described; this has been added to

the Transterpreter virtual machine. Then in section 5.7 virtual machine introspection is

applied to the task of tracing occam-pi programs.

5.2 Related Work

Viewing the state of an executing program is one method of understanding its be-

haviour and debugging program code. Past work in the area of debugging occam

has concentrated heavily on networks of Transputers, as these were the primary tar-

get for large scale occam application development. As such, tracing and debugging

of program execution across networks of processors increased the complexity of past

solutions. In addition to this observation, past solutions can be divided into those

that traced and interacted with running programs and those that acted on stored post-

mortem traces.

Stepney’s GRAIL [239] extracted run-time data from a running network of Trans-

puters, instrumenting the target occam program at compile-time with a modified ver-

sion of the INMOS compiler and extracting the data over a custom bus external to the

Transputer network [240], so as not to interrupt the communications occurring on the

communications links. Maintaining the original timings and communication semantics

as a program not being debugged is critical.

Cai and Turner identified in [63] the danger of added debugging hook processes

altering the timing of a parallel program and propose a model under which a monitor

has execution control over all processes and a logical clock is maintained for the exe-

cution of each process. The logical clock provides a way to measure and balance the

interaction added to the network by the monitor hooks, and is similar to the approach

described in section 5.6.1. The paper also identifies the problem of maintaining tim-

ings for real-time systems whilst monitoring the system, suggesting the use of dummy

test-sources or buffering of real-time data.

Debugging methodologies that require annotations or changes to the code have the
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potential to introduce additional complexity, changing the run-time dynamics of the

program. May’s Panorama [175], designed for the debugging of message-passing sys-

tems, identifies an approach for post-mortem debugging which records a log of com-

munications. Replaying these communications offers a look at the particular execution

of the program whilst introducing only a minimal overhead at run-time. The Panorama

system had the downside of requiring all communications to be modified to use a dif-

ferent call structure and the software recompiled against a custom library. This need for

program modification, instrumentation or annotation is common to many approaches

that do not have the benefit of an interpreted run-time environment.

The INMOS Transputer Debugging System (TDS) [197] allowed the user to inspect

the occam source and display run-time values of variables. Programs for use with TDS

were compiled in a debug mode which embedded extra information: workspace off-

sets, types and values of constants, protocol definitions, and workspace requirements

for procedures and functions. The TDS provides access to running processes in the

network by “jumping through” channels to the process on the other end of the chan-

nel. Deadlock detection requires source modification, as a deadlocked process cannot

be jumped to using the channel jump system. Processes suspected of causing deadlock

must be modified to include a secondary process and channel which will not deadlock

and allows a jump into the process for state inspection.

Finally, Zhang and Marwaha’s Visputer [267] provided a highly developed visual

tool for editing and analysing occam process networks. An editing suite allowed the as-

sisted building of programs using toolkit symbols. A network editor facilitated the con-

figuration of networks of Transputer processors. Pre-processing of source files inserted

instrumentation library calls to support post-mortem debugging and performance pro-

filing. A static analyser also predicted performance and detected deadlocks. Impor-

tantly Zhang and Marwaha pointed out that occam “has a language structure that is

highly suitable for graphical representation”. The work presented in this chapter is in-

tended to provide a means of extracting the information required to exploit this feature

of occam.
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5.3 The Transterpreter Virtual Machine

The Transterpreter, or TVM (Transterpreter Virtual Machine), is a virtual machine in-

terpreter for running occam-pi applications compiled to a modified form of Transputer

bytecode [147, 146]. Written in platform independent ANSI C, the TVM emulates a

hybrid T8 Transputer processor. Most T8 instructions are supported, with additional

instructions added to support dynamics and mobility added by occam-pi. This pro-

vides an alternate compilation and execution path to KRoC by emulating the Trans-

puter processor itself rather than converting Transputer instructions to native machine

instructions.

The Transputer was a three-place stack machine, and executed a bytecode where the

most common instructions and their immediates required only a single byte to repre-

sent. Large instructions were composed from sequences of smaller instructions prior to

execution. Hence the Transputer bytecode is compact, and simple to interpret. A modi-

fied version of the INMOS compiler with occam-pi support is used to generate extended

transputer code (ETC) a process shared with KRoC. A separate linker then resolves sym-

bolic references and expands certain operations, converting ETC into bytecode for the

TVM.

The TVM has a very small memory footprint making it suitable for use on small

embedded systems, such as the LEGO Mindstorms RCX [235] and Surveyor SRV-1 [12]

mobile robotics platform. The work described here focuses on execution on desktop

class machines; however, the portability of the bytecode representation used by the

TVM allows emulation of embedded systems on a desktop machine. The techniques

detailed here can be used in such a manner to debug embedded application code via

emulation when the target platform has insufficient resources to support debugging

in-place.
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5.4 Introspection

To support this work the TVM was transitioned from a static library design to a fully re-

entrant implementation. This shift allows the execution of multiple virtual Transputers

concurrently, or at least with the appearance of concurrency. The virtual Transputers

can communicate with each other, or more specifically processes in one TVM instance

can communicate with processes in another, efficiently and transparently. Being soft-

ware defined, these Transputers are not restricted in the number of communications

links they support, and hence one virtual link is provided per-shared channel, free-

ing the programmer from multiplexing a fixed number of links. Mobile data [50] and

mobile channels [51] are also supported, allowing the construction of arbitrary process

networks which in turn span multiple virtual machines.

Each TVM instance has its own registers and run-queues. Instances can be sched-

uled cooperatively (only switched when they relinquish control), or pre-emptively (time-

sliced). The specific algorithm used to schedule between TVM instances is defined by

the virtual machine wrapper. For most purposes a round-robin algorithm is used (the

same as occam processes); however, priority is also supported.

On a small robotics platform, the Surveyor Corporation SRV-1 [12], multiple TVM

instances were used to execute a cooperatively scheduled firmware and a time-sliced

user application. The user application is loaded at run-time, and may be swapped out,

terminate or even crash, without interfering with the firmware. The firmware executes

as required, mediating access to the hardware on behalf of the user application.

The virtual Transputers, TVM instances, allow for the isolation and encapsulation

required to start allowing one occam-pi program to mediate and intercede on the ex-

ecution of another. This concept, of multiple concurrent virtual machine interpreters,

underpins the debugging framework presented in later sections.
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DATA TYPE VM.STATE

PACKED RECORD

INT state:

[3]INT stack:

[4]BYTE type:

INT oreg:

ADDR wptr:

IPTR iptr:

INT icount:

INT eflags:

:

Figure 62: Virtual machine state data record.

5.4.1 Interface

The application running in each virtual machine instance can access the virtual machine

runtime via a special PLACED channel. Channel read requests to the PLACED channel re-

turn a channel bundle (channel type [51]) which provides request and response channels

for the manipulation of the current virtual machine instances and the creation of new

sub-instances. For each sub-instance created a further channel bundle is returned that

can be used to control the instruction-by-instruction execution of the sub-instance.

The virtual machine interface channel also provides access to the interpreter’s byte-

code decoder. Using this interface, a virtual machine can load bytecode into new sub-

instances, and access additional information stored in the bytecode. Details of the byte-

code format and decoder interface can be found in section 5.5.

Having decoded bytecode a VM instance is created and associated with it. Once

top level process parameters are supplied, and the instance started, the control interface

can be used to mediate its execution in a number of ways. The following subsections

detail requests which can be used to control execution. The occam-pi virtual machine

state data structure is shown in figure 62. The protocol definitions for manipulating

the virtual machine are shown in figures 63 and figure 64 for request and response

respectively.
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PROTOCOL P.VM.CTL.RQ

CASE

run = 0 ; INT

-- run until for N instructions or until breakpoint

step = 1

-- step traced instruction

dispatch = 2 ; INT; INT

-- dispatch an arbitrary instruction , with argument

set.bp = 3 ; IPTR

-- set break point

clear.bp = 4 ; IPTR

-- clear break point

get.clock = 5

-- get clock details

set.clock = 6 ; INT; INT

-- set clock type and frequency

trace = 7 ; INT; BOOL

-- enable/disable trace type (instruction)

get.state = 8

-- get VM state

set.state = 9 ; VM.STATE

-- set VM state

read.word = 10; ADDR

-- read word at address

read.byte = 11; ADDR

-- read byte at address

read.int16 = 12; ADDR

-- read int16 at address

read.type = 13; ADDR

-- read type of memory at address

return.param = 14; INT

-- release parameter N

set.param.chan = 15; INT; MOBILE.CHAN

-- set parameter N to channel

:

Figure 63: Virtual machine control request protocol.
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PROTOCOL P.VM.CTL.RE

CASE

decoded = 0 ; IPTR; INT; INT

-- new IPTR , instruction , arg

dispatched = 1 ; IPTR; ADDR

-- new IPTR and WPTR

bp = 2 ; IPTR

-- break pointer IPTR reached

clock = 3 ; INT; INT

-- clock type and frequency

ok = 4

error = 5 ; INT

state = 6 ; VM.STATE

word = 7 ; INT

byte = 8 ; BYTE

int16 = 9 ; INT16

type = 10; INT

channel = 11; MOBILE.CHAN

:

Figure 64: Virtual machine control response protocol.

5.4.1.1 run

Execute bytecode for a number of instruction dispatches, or until a breakpoint or error

is encountered. With the exception of breakpoints this causes the sub-instance to act

as a normal virtual machine instance. This operation is implemented synchronously

and is uninterruptable, blocking execution of the parent virtual machine; however, this

could be enhanced to permit interleaved execution. Where processing facilities exist

the sub-instance could also be executed concurrently on a separate processor.

5.4.1.2 step

Decode and dispatch a single bytecode instruction. Feedback is given when the instruc-

tion is decoded and then after it is dispatched, allowing the supervising process to keep

track of execution state without querying the entire virtual machine state.
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5.4.1.3 dispatch

Execute, dispatch, an instruction not contained in the program bytecode. This can be

used to alter program flow, for example to execute a stop process instruction to pause

the running process and scheduling the next. Alternatively this request can be used to

inject a completely new stream of instructions into the virtual machine instance.

5.4.1.4 get.state / set.state

Get and set requests for the state provide access to the virtual machine registers, instruc-

tion pointer, operand stack and clock. By combining these requests with the dispatch

request a debugger can save virtual machine state, change processes and later restore

state.

5.4.1.5 read / write

Read and write requests for all basic types provide access to the virtual machine’s mem-

ory. As these can only be executed when the virtual machine is stopped, they have

predictable results outside their influence on program behaviour. If virtual memory is

in use then address translation occurs transparently.

5.5 Bytecode

To support debugging enhancements a new extensible bytecode format was developed

for the TVM. Until the introduction of this new format, a number of different fixed

formats were used for the different platforms supported by the TVM. By creating a

new format bytecode decoding support code was unified, and the need to rewrite the

decoder when the bytecode is extended has been removed.
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5.5.1 Encoding

The new encoding presented here is called TEncode. TEncode is a simple binary markup

language, a modified version of IFF.

TEncode streams operate in either 16-bit or 32-bit mode, which affects the size of

integers used. A stream is made up of elements. Each element consists of a 4-byte

identifier, followed by an integer, then zero or more bytes of data. Elements always

begin on integer aligned boundaries, the preceding element is padded with null bytes

(“\0”) to maintain this. All integers are big-endian encoded, and of consistent size (2-

bytes or 4-bytes) throughout a stream. Integers are unsigned unless otherwise stated.

Identifier := 4 * BYTE

Integer := INT16 / INT32

Data := { BYTE }

Padding := { "\0" }

Element := Identifier, Integer, Data, Padding

Figure 65: TEncode identifiers.

Identifiers are made up of four ASCII encoded characters stored in 8-bit bytes, and

are case-sensitive. The last byte indicates the type of data held in the element. The

following types are defined:

• Byte string. Integer field encodes number of bytes in Data field, excluding padding

null-bytes.

• Integer. Integer field encodes signed numeric value, no Data bytes follow.

• List of elements. Integer field encodes number of bytes in Data field which will

be a multiple of the integer size, Data field contains nested elements, and may be

parsed as a new or sub-Stream.

• String (UTF8 null-terminated). Integer field encodes number of bytes in Data

including null terminator, but not padding.

• Unsigned integer. Integer field encodes unsigned numeric value, no Data bytes

follow.
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With the exception of signed and unsigned integer types, the Integer of all elements

defines the unpadded size of the Data which follows. Decoders may use this rela-

tionship to skip unknown element types, therefore this relationship must be preserved

when adding new types.

A TEncode stream begins with the special tenc or TEnc element, the integer of

which indicates the number of bytes which follow in the rest of the stream. A lower-

case tenc indicates that integers are small (16-bit), whereas an upper-case TEnc indi-

cates integers are large (32-bits). The TEnc element contains all other elements in the

stream.

ByteString := 3 * BYTE, "B", Integer, Data [, Padding ]

SignedInt := 3 * BYTE, "I", Integer

ElementList := 3 * BYTE, "L", Integer, Stream

UTF8String := 3 * BYTE, "S", Integer, {<character byte>},

"\0" [, Padding ]

UnsignedInt := 3 * BYTE, "U", Integer

Element := ByteString / SignedInt / ElementList / UTF8String /

UnsignedInt

Header := ("tenc", INT16) / ("TEnc", INT32)

Stream := { Element }

TEncode := Header, Stream

Figure 66: TEncode types.

Decoders ignore elements they do not understand or care about. If multiple ele-

ments with the same identifier exist in the same stream and the decoder does not ex-

pect multiple instances then the decoder uses the first encountered. When defining a

stream, new elements may be freely added to its definition across versions; however,

the order of elements must be maintained in order to keep parsing simple.

5.5.2 Structure

The base Transterpreter bytecode is a TEncode stream defined in figure 67.

As previously stated, the TEnc element marks the beginning of a TEncode stream.



CHAPTER 5. INTROSPECTION 247

TEnc <stream length>

tbcL <length>

endU <endian (0=little, 1=big)>

ws U <workspace size (words)>

vs U <vectorspace size (words)>

padB <length> <padding>

bc B <length> <bytecode>

Figure 67: TEncode header fields.

The stream contains a number of tbcL elements, each defines a bytecode chunk. A

stream may contain multiple bytecode chunks in order to support alternative compila-

tions of the same code, for example with different endian encodings. The endU element

specifies the endian type of the bytecode. The ws U and vs U elements specify the work-

space and vectorspace memory requirements in words. The padB element ensures there

is enough space to in-place decode the stream. Finally, the bc B element contains the

bytecode which the virtual machine interpreter executes.

Following the mandatory elements a number of optional elements specify addi-

tional properties of a chunk of bytecode. By placing these elements after the mandatory

elements a stream decoder on a memory constrained embedded system can discard all

unnecessary elements, such as debugging information, once the mandatory elements

have been received and decoded.

A tlpL element defines the arguments for the top level process (entry point). The

foreign function interface table, and associated external library symbols are provided

in a ffiL element. A symbol table, defining the offsets, memory requirements and type

headers of processes within the bytecode is provided by a stbL element. Finally a dbgL

element specifies debugging information.

The debugging information takes the form shown in figure 68.

A table of source file names is defined by fn S elements. A table of integer triples is

then specified by the lndB element. The integers in each triple correspond to a bytecode

offset, the index of the source file (in the source file name table), and the line number in

the specified source file. The table is arranged such that bytecode offsets are ascending
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dbgL <length>

// File names

fn L <length>

fn S <length> <file name>

// Line Numbering Data

lndB <length>

<bytecode offset> <file index> <line number>

... further entries ...

Figure 68: TEncode debugging section.

and offsets that fall between entries in the table belong to the last entry before the offset.

For example if entries exist for offsets 0 and 10, then offset 5 belongs to offset 0.

5.5.3 In-place Decoding

On memory constrained embedded platforms it is important to minimise and prefer-

ably remove dynamic memory requirements. For this reason the new bytecode format

is designed not to require dynamic memory allocation for decoding. This is achieved

by providing for rewriting of the bytecode in memory as it is decoded. The C structure

tbc_t is placed over the memory of the tbcL element of the TEncode stream and the

component fields written as their TEncode elements are decoded. The bytecode field

is a pointer to the memory address of the data of the bc B element. tlp, ffi, symbols

and debug fields are pointers to the in-place decodes of their associated elements. The

pointers are NULL if the stream does not contain the associated element.

5.5.4 Interface

As with the introspection interface discussed in section 5.4, the bytecode decoder also

has a channel interface accessible from within a virtual machine instance. When passing

an encoded bytecode array to the virtual machine, a channel bundle is returned which

can be used to access the decoded bytecode. The following subsections detail some

of the available requests. The occam-pi protocol definition for the channel bundle is

shown in figure 70.
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struct tbc_t {

unsigned int endian;

unsigned int ws;

unsigned int vs;

unsigned int bytecode_len;

BYTE *bytecode;

tbc_tlp_t *tlp;

tbc_ffi_t *ffi;

tbc_sym_t *symbols;

tbc_dbg_t *debug;

};

Figure 69: TEncode in-place decoding structure.

5.5.4.1 create.vm

Create a new virtual machine instance based on this bytecode. A control channel bun-

dle is returned for the new instance.

5.5.4.2 get.file

Translate a source file index to its corresponding file name. The file name is returned as

a mobile array of bytes.

5.5.4.3 get.line.info

Look up the line numbering information for a bytecode address. The source file index

and line number are returned if the information exists.

5.5.4.4 get.symbol / get.symbol.at

Look up a process symbol by name or bytecode address. The symbols bytecode offset,

name, type description and memory requirements are returned if the symbol exists.
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PROTOCOL P.BYTECODE.RQ

CASE

create.vm = 0

get.symbol = 1; MOBILE []BYTE

-- look up symbol name

get.symbol.at = 2; IPTR

-- look up symbol at bytecode offset

get.file = 3; INT

-- translate file number to name

get.line.info = 4; IPTR

-- get file/line number of address

get.details = 5

-- get bytecode details

get.tlp = 6

-- get top -level -process details

:

PROTOCOL P.BYTECODE.RE

CASE

vm = 0; CT.VM.CTL!

error = 1; INT

file = 2; MOBILE []BYTE

line.info = 3; INT; INT -- file , line

symbol = 4; IPTR; MOBILE []BYTE; MOBILE []BYTE; INT; INT

-- offset , name , definition , ws , vs

details = 5; INT; INT; INT -- ws , vs , length

tlp = 6; MOBILE []BYTE; MOBILE []BYTE

:

CHAN TYPE CT.BYTECODE

MOBILE RECORD

CHAN P.BYTECODE.RQ request?:

CHAN P.BYTECODE.RE response!:

:

Figure 70: Bytecode channel bundle protocol definitions.
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5.5.4.5 get.tlp

Access information on the top-level-process (entry point), if one is defined in the byte-

code. If defined, the format mask and symbol name of the process are returned. This

information is required to setup the entry point stack.

5.6 Debugging Support

The following section details significant changes and features added to the TVM to

further support debugging of occam-pi programs.

5.6.1 The Probe Effect

The probe effect is a term used to describe the consequence that observing a parallel or

distributed system may influence its behaviour. This is a reminiscent of the Heisen-

berg uncertainty principle as applied in quantum physics. If the decisions made in

non-deterministic elements of a program differ between runs under and not under ob-

servation, then the observed behaviour will not be the actual operation behaviour of

the program. The impact of this on debugging is that, on observation of a known faulty

program, errors do not occur or different errors appear.

To prevent the occurrence of the probe effect we must ensure the non-deterministic

behaviour of the program is not altered by observation. In occam-pi there are two

sources of programmed non-determinism: alternation constructs and timers. A pro-

gram free of these constructs is completely deterministic; in fact a program is still de-

terministic in the presence of simple timer delays [71].

Previous work has shown that by maintaining the sequence of events in a program

and recording the decisions made by non-deterministic elements, it is possible to replay

parallel programs [162]. In the work presented here no attempt is made to constrain the

non-determinism which occurs from external inputs to the program, only to control the

internal non-determinism. Given that the implementation of virtual machine constructs
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such as alternation is unaffected by changes made to monitor program execution, only

the non-determinism caused by timers needs to be managed.

The method used for constraining timer based non-determinism is to use a logical

time clock, as opposed to a real time clock [63]. This logical clock ticks based on the

count of instructions executed. By applying a suitable multiplier the instruction count

is scaled to give a suitable representation of time.

The accuracy of the logical clock’s representation of time depends on the scaling

value used. At program start-up the virtual machine (or firmware components of it),

calculates the average execution time of a spread of instructions, and uses this to derive

a scaling factor. This scaling factor is then periodically adjusted and offset, such that

the clock time matches the actual time required to execute the program so far. If virtual

machine execution pauses, for example waiting on the timer queue, then an adjustment

need only be stored to the new time when execution resumes.

In order to replay a program’s execution only the initial scaling factor and the in-

struction offset and value of subsequent adjustments need to be stored. If adjustments

are stored in three 32-bit integers, then any single adjustment will be 12 bytes in size.

Assuming adjustments are made approximately once a second then around 40KiB of

storage is required for every hour of execution. As the program is replayed, adjust-

ments are applied at their associated instruction offsets irrespective of the actual execu-

tion speed of the program.

5.6.2 Memory Shadowing

Support for shadowing each location of the workspace (process stack) with type infor-

mation of the value it holds was added. This is, in principle, similar to other memory

checking and debugging tools such as Valgrind [192].

Type information assists in the debugging of programs in the absence of additional

compiler information about the memory layout. The type mapping is maintained at

run-time for the virtual machine registers and copied to and from the shadow map as

instructions are interpreted. For example if a pointer to a workspace memory location is
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loaded and then stored to another memory location, then the type shadow will indicate

the memory is a workspace pointer. The shadow types presently supported are:

• Data: The memory location holds data of unknown type.

• Workspace: Pointer to a workspace memory location.

• Bytecode: Pointer to a location in bytecode memory, e.g. an instruction or constant

pointer.

• Mobile: Pointer into mobile memory.

• Channel: Memory is being used as a channel.

• Mobile type: Mobile type pointer or handle.

By iterating over the shadow of the entire memory, a debugger can build an image

of a paused or crashed program. To assist in this, the memory shadow holds flags about

whether the memory is utilised or not. Workspace words are marked as in-use when

they write to, and marked as free whenever a process releases them via the ADJW (adjust

workspace) instruction. As memory known to be unused need not be examined, false

positives and data ghosts are reduced.

In addition to a utilisation flag, call stack and channel flags are also recorded. When-

ever a call instruction is executed, the workspace word used to store the return address

is marked. This allows later reconstruction of the call stack of processes. Any word

used as a channel in a channel input or output instruction is also marked to facilitate

the building of process network graphs. If a process’s workspace holds a channel word,

or a pointer to a channel word, then it can be assumed it is a communication partner

on that channel. When more than two such relationships exist then pointers can be

assumed to represent the most recent partners on the channel, for example a channel

declared in a parent process being used by two processes running in parallel beneath

it.
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MOBILE []BYTE data:

INT errno:

SEQ

... load bytecode into data array ...

vm[request] ! decode.bytecode; data

vm[response] ? CASE

CT.BYTECODE! bytecode:

bytecode; bytecode

-- bytecode decoded

SEQ

bytecode[request] ! create.vm

bytecode[response] ? CASE

CT.VM.CTL! vm.ctl:

vm; vm.ctl

-- VM instance created

error; errno

... handle VM creation error , e.g. out of memory ...

error; errno

... handle decoding error , e.g. invalid bytecode ...

Figure 71: Decoding bytecode and creating a virtual machine instance for it.

5.7 A Tracing Debugger

The virtual machine extensions and interfaces so far detailed can be used to implement

various development and debugging tools. This section details a tracing debugger.

5.7.1 Instancing Bytecode

First the bytecode we intend to run must be decoded, this is done by making a decode.bytecode

request on the introspection channel. Having successfully decoded bytecode we can

request a virtual machine instance to execute it. The code example in figure 71 de-

mostrates decoding bytecode and creating a virtual machine instance. A virtual ma-

chine introspection bundle is assumed to be defined as vm.

5.7.2 Executing Bytecode

Before we can execute bytecode in our newly created virtual machine instance we must

supply the parameters for the top-level-process. In a standard occam-pi program these
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CT.CHANNEL? kyb.scr , scr.svr , err.svr: -- server ends

CT.CHANNEL! kyb.cli , scr.cli , err.cli: -- client ends

SEQ

... allocate channels ...

-- fork off handling processes

FORK keyboard.handler (kyb.cli , ...)

FORK screen.handler (scr.svr , ...)

FORK error.handler (err.svr , ...)

-- set top level parameters

vm.ctl[request] ! set.param.chan; 0; kyb.scr

vm.ctl[response] ? CASE ok

vm.ctl[request] ! set.param.chan; 1; scr.cli

vm.ctl[response] ? CASE ok

vm.ctl[request] ! set.param.chan; 2; err.cli

vm.ctl[response] ? CASE ok

Figure 72: Setting up a virtual machine top-level-process.

provide access to the keyboard input, and standard output and error channels. In this

example tracing code we will assume the program being processed has a standard top-

level-process; however, to handle alternate parameter combinations the get.tlp (sec-

tion 5.5.4.5) request would be used to query the bytecode. In figure 72 we supply the

top level parameters as channel bundles, preparing the bytecode for execution.

Having provided the top level parameters we can begin executing instructions from

the bytecode. We want to trace the entire execution of the program thus we use the

step request on the VM control channel bundle. If we did not require information

about the execution of every instruction then we could use the run request. The code

snippet in figure 73 demonstrates the step request, which returns two responses, one

on instruction decode and one on dispatch.

5.7.3 Tracking Processes

We want to create a higher level view of the program execution than the raw instruction

stream as it executes. Ideally we want to know the present line of execution of all the

processes. To do this we need to track the executing processes and attribute instruction
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IPTR iptr:

ADDR wptr:

INT op , arg:

SEQ

vm.ctl[request] ! step

vm.ctl[response] ? CASE decoded; iptr; op; arg

-- decoded instruction "op", with argument "arg"

-- new instruction pointer: iptr

vm.ctl[response] ? CASE dispatched; iptr; wptr

-- dispatched instruction

-- new instruction pointer: iptr

-- new workspace pointer: wptr

Figure 73: Dispatching instruction on virtual machine.

execution to them. We need to monitor start process and end process instructions, addi-

tionally we must track any instruction that alters the workspace pointer (stack) such as

call and adjust workspace pointer.

The code snippet in figure 74 converts the decoding and dispatching of instructions

into a stream of executing, start.process, end.process and rename.process tagged pro-

tocol messages. Each message carries the process workspace, which acts as the process

identifier. The rename.process messages indicate a change of process identifier, or a

shift in workspace pointer.

5.7.4 Visualisation

The bytecode decoder interface detailed in section 5.5.4 is used to look up the present

source position of each process. This allows us to generate output on the current source

file and line being executed. Visualising this information as a graph of active processes

we can see the executing program, although the specifics of this visualisation is an area

for future work. Call graphs can be generated by monitoring call and return instruc-

tions, and by recording the process which executes a start process instruction as the

parent of the process started, we can see the program structure.

Adding to the graph of active processes, we also build a graph of relationships be-

tween processes. Whenever a channel communication instruction is executed we record
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ADDR id:

IPTR iptr:

WHILE TRUE

ADDR new.id:

SEQ

-- report present process position

out ! executing; id; iptr

-- start process and end process

vm.ctl[request] ! step

vm.ctl[response] ? CASE decoded; iptr; op; arg

IF

op = INS.OPR

VM.STATE state:

SEQ

vm.ctl[request] ! get.state

vm.ctl[response] ? CASE state; state

CASE arg

INS.STARTP

-- process workspace is on the operand stack

out ! start.process; state[stack][0]

INS.ENDP

out ! end.process; id

ELSE

SKIP

TRUE

SKIP

-- workspace pointer altering operations

vm.ctl[response] ? CASE dispatched; iptr; new.id

IF

(op = INS.ADJW) OR (op = INS.CALL)

out ! rename.process; id; new.id

(op = INS.OPR) AND (arg = INS.RET)

out ! rename.process; id; new.id

TRUE

SKIP

-- update workspace pointer

id := new.id

Figure 74: Implementing tracing of virtual machine instructions.
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the channel pointer in a channel table. Processes which access the same channel be-

come related; edges can be drawn between them in the graph of process nodes. On

adjust workspace pointer instructions, and other memory deallocation instructions chan-

nel words which fall out of scope are deleted from the channel table. This information

can be used to visualise the relationships between the active processes, either in real-

time as communication occurs, or statically as a cumulative image recorded over time.

Figure 75 applies these techniques to generate an idealised visualisation of an ex-

ample from the KRoC compiler distribution, commstime.occ. Curved boxes represent

processes. Squared boxes represent calls in the call stack. Bold text is the present line

being executed, as taken from the source file. Dots are channels, with arrowed lines

representing communication requests. Hollow arrows are previously executed input

or output, and filled arrows are active blocked requests.

PROC comms.time (CHAN BYTE keyboard?, screen!, error!)

PROC succ (CHAN INT in?, out!)

    SEQ
      in ? x
      out ! x PLUS 1  -- let's ignore overflow

demo_cycles.occ:49

      succ (c?, b!)
commstime.occ:83

PROC prefix (VAL INT n, CHAN INT in?, out!)

demo_cycles.occ:85
    id (in?, out!)

PROC id (CHAN INT in?, out!)

demo_cycles.occ:38
    SEQ
      in ? x
      out ! x

commstime.occ:77
      prefix (0, b?, a!)

PROC delta (CHAN INT in?, out.1!, out.2!)

      in ? x
      PAR
        out.1 ! x

demo_cycles.occ:74

          delta (a?, c!, d!)        -- the one that does a parallel output
commstime.occ:82

PROC consume (VAL INT n.loops, CHAN INT in?, CHAN BYTE out!)

        SEQ i = 0 FOR n.loops
          in ? value
        --}}}

commstime.occ:31

      consume (1000000, d?, screen!)
commstime.occ:84

Figure 75: Visualisation of commstime.occ.
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5.8 Conclusions

A method for occam-pi programs to inspect and intercede on the execution of other

occam-pi programs has been presented. This access is driven through a channel based

interface; which permits reasoning about programs which use it, in-line with that appli-

cable to a standard occam-pi program. Using this new interface it is possible to develop

debugging tools for occam-pi using occam-pi, which allows us to use a full process-

oriented programming environment in order to tackle the challenges faced developing

such tools.

By constraining the probe effect caused by non-determinism related to the use of

time in programs, cyclic debugging is permitted: the process of repeated execution of a

program with slight modifications to its composition of inputs in an attempt to locate

and fix an error. Additionally, memory typing information is exposed in order to help

build complete debugging tools.

Virtual machine sub-instances presently run synchronously to their parents, a log-

ical enhancement to our work is the multiplex execution of virtual machine instances.

Further to this, by applying algorithms developed for the CCSP KRoC runtime, it

should be possible to extend the TVM to execute multiple instances concurrently on

multi-core shared-memory hardware. These concurrently executing instances will be

able to communicate, wait and synchronise on each other safely while maximising use

of any underlying hardware parallelism.

Given the method tool for inspecting the behaviour of running parallel programs

developed here it would be ideal to make this power available in an easy to interpret

graphical form. Exton identified four main areas of importance in the visualisation of

program execution: abstraction, emphasis, representation and navigation [103]. Being

able to provide a good abstraction level for observation of run-time activity, and the

ability to adjust the level in tune with the user’s expertise is critical to sensibly observ-

ing executing networks of processes. The design of a suitable visual model to repre-

sent the state of a running occam-pi program is an as yet unexplored area, and may
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potentially provide useful insight to inform related work in visual design of parallel

programs.

Dynamic network topologies such as those possible with occam-pi add another di-

mension of complexity to the debugging process beyond that encountered with occam

running on the Transputer. Dijkstra states that “our powers to visualise processes

evolving in time are relatively poorly developed” [92], a statement that encapsulates

some of the difficulty encountered when trying to reason about systems using dynamic

process creation and mobile channels. Work to allow programmers of concurrent and

process-oriented software to explore the execution of their program and interact with its

run-time behaviour to diagnose problems and mistakes is an area still requiring much

research.



Chapter 6

Conclusions and Further Work

This chapter summarises the broad conclusions of this thesis and a range of areas for

further work.

6.1 Overview

This thesis has surveyed support for programming and managing concurrency in pro-

gramming languages. A significant finding is that popular languages lack much sup-

port for concurrent programming, and that most support for concurrency program-

ming primitives in common programming languages are data-oriented. This focus

on a shared-memory model contrasts with a trend in hardware toward distributed

and asymmetric models of computation. A focus on data-oriented methods also ig-

nores complexities the data-oriented paradigm introduces through abstraction (see sec-

tion 2.2.1).

Notationally, message-passing concurrency in general and process-oriented pro-

gramming specifically has a high degree of mechanical sympathy with distributed

261



CHAPTER 6. CONCLUSIONS AND FURTHER WORK 262

memory computer systems. This is exemplified by the use of MPI in supercomput-

ing applications. However message-passing usage tends to be limited to communica-

tion between computation nodes, and is not used between software components on the

same node.

The technical work of this thesis demonstrates that process-oriented programming

can be used for software structure and be efficient on modern multicore computers.

This uses performance-centric approaches such as work-stealing, wait-free algorithms,

cache affine batching and meticulous optimisation to reduce the overhead of all critical

paths. The mechanical sympathy of process-oriented design is proven as unmodified

software codes scale with the addition of processors. This is because process-oriented

software provides parallel execution potential which can be efficiently extracted and

utilised when synchronisation and context switch overheads are sufficiently amortized.

Additional technical work shows approaches for compiling and debugging process-

oriented software. The work on compilation techniques demonstrates that the process-

oriented approach is well supported by a continuation passing style of compilation

(4.5) and modern architecture independent assembly languages such as LLVM. Recent

work on light-weight context switching support for LLVM [97] and the development

of continuation passing C [151] has also shown continuation passing style to be useful

abstraction for concurrency in software. Presented work on introspection and debug-

ging, while low-level in nature, suggests that a process-oriented programming style of

concurrency is useful for reflection on concurrency itself in programming languages.

Process-oriented reflection is a significant area for further investigation.

6.2 Specific Improvements

Definitions are given of process-oriented decompositions for common concurrent pro-

gramming primitives in section 2.4.1. These definitions are informal, therefore it may be

appropriate to supplement them with formal definitions and models. Work has already

been done in this area by Welch and Barnes with models of barriers [255].
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The algorithms contributed in this thesis rely on a total store order memory archi-

tecture and certain types of atomic operation such as compare and swap. Thus a useful

area for further work is to explore implementing the same algorithms on different ar-

chitectures and with load-linked/store-conditional atomics. An obvious candidate archi-

tecture is ARM, which is used in the majority of mobile phones and tablet computers.

Most changes applicable to ARM are also applicable to IBM POWER which is used in

large super-computing applications. Rather than simply emulating compare and swap

and adding additional memory barrier instructions, optimal performance is likely to

be achieved by restructuring the order of operations for greater sympathy with the

hardware.

As previous noted, as the number of processor cores increases, most multiprocessor

architectures develop non-uniform memory architecture (NUMA) characteristics. To allow

increased scalability to this class of machine, there is a need to add NUMA-awareness

to our scheduler and memory management subsystems and reassess the use of atomi-

cally mutable bitmaps of active schedulers, as these disregard locality. One promising

solution is to dynamically constrain subsets of the process network and their associated

batches to groups of logical processors. Random work stealing may not be the most ap-

propriate for larger NUMA systems. The work stealing algorithms should be informed

by the cache hierarchy to allow, for example, stealing of work which is in caches shared

between adjacent cores.

For stack (rather than heap) languages it may be desirable to be able to dynami-

cally grow process stacks. With occam-pi this is not necessary, but if it were then the

minimum process size would be multiple pages rather than 64 bytes. On a 64-bit archi-

tecture this could be supported with a minimum process stack size of just a single page

by using additional address space. However if process migration is supported (see 6.3)

then the same mechanisms could be used for relocating and coalescing the memory of

processes.

As a whole, memory management within the runtime is not addressed in this the-

sis; however, the cost of memory management can significantly affect the performance
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of runtime operations [148]. The scope of memory management required by occam-pi

is sufficiently limited that it can be managed with reference counting alone. In mod-

ern languages a garbage collection scheme may be required, although the read-only

nature of shared data in process-oriented software may reduce the complexity. Little

work has been done on memory management for process-oriented software; the most

comparable language is Manticore [108]. This is a clear area for further work.

6.3 Heterogeneous Architectures

Modern computer architectures are moving beyond simple NUMA, to systems with

processors that vary distinctly in capability and speed. GPGPU is the most obvious

example (2.5.14), where the graphics processor has its own distinct memory and in-

struction set. Graphics processor cores are moving toward general computation models

and are increasingly integrated on the same physical package as other computational

resources [224]. In order to support these code for co-processors must be compiled sep-

arately to produce machine code for each different type of processor involved. With

present programming techniques this occurs once at compile time – components to run

on the GPU are separated out where they are compiled into a different format. These

are then loaded on to the GPU as needed.

There are a number of ways process-oriented programming can support heteroge-

neous architectures. One of the simplest is encapsulation, where a process abstracts

and hides a piece of hardware. The hardware interface is made to appear as channel

communication with a process. This technique is useful for special purpose hardware

such as video decoders [219]. However it does not map well to general purpose com-

putation.

Alternatively processes could be placed on different processors at creation time de-

pending on the type of computation resources they require. Communication channels

provide interaction between components on distinct processors. This partitioning is

in principle the same as the current GPGPU programming techniques, although GPU
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computation is generally placed into a work queue from where it is dispatched. GPU

computation in particular is grouped into jobs which are scheduled by the hardware

(or hardware driver). Thus an alternative would be process coalescing. In occam-pi a

loop can be declared parallel, in which case the processing of each loop element is un-

dertaken by a separate concurrent process:

PAR i = 0 FOR SIZE data

data[i] := compute.new.value(data[i])

Each process is independent but conducting the same computation. Assuming no

communication, this computation is an ideal candidate for vectorisation. Work by

Damian Dimmich has looked at manual vectorisation of these forms [95]. For automatic

vectorisation, groups of similar processes could be coalesced and executed as a single

instruction sequence on a SIMD processor such as a GPU. This approach is essentially

stream programming [62, 156]. By applying aspects of stream programming research,

process networks and communication within them could be converted to SIMD vector

instruction streams.

When general purpose computing facilities are available, process migration rather

than explicit placement is ideal. A process provides a unit of data and computation that

should be relocatable within a larger system. If mutable shared data is disallowed then

the closure of a process can be relocated as long as its communication links are main-

tained. Within a system of shared memory (even heavily distributed) then versions of

the algorithms presented in this thesis could be used to support communication. In

larger systems, a network based approach may be necessary. Previous work by Mario

Schweigler has shown how occam-pi channels can be automatically reconnected across

distributed networks [230]. This also works for dynamic process networks.

Previous work with occam-pi and mobile processes has focused on explicit control

of when a process is running or stopped [257]. This is a useful low level behaviour,

however to provide a useful high-level abstraction the movement of processes within a

system should be transparent and automatic. The programmer could add hints to their
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code about what processing facilities a process would benefit from and thus influence

its placement. Additionally, the compiler could perform a similar computation of hints.

The placement of processes on appropriate hardware is then a dynamic best-effort con-

straint solving exercise.

Typically the code used to process data is smaller than the data being processed.

Thus for a distributed process-oriented system the process should be moved close to

the data (or communication parties it engages with frequently) rather than moving

the data across the system [176]. To facilitate this scenarios process migration must be

computationally cheap. This is not true for large operating system processes, but is a

possibility for process-oriented fine-grain concurrency [187].

In summary, runtime support (and compilation) for process-oriented programs should,

going forward, focus on process migration and process coalescing. This will allow process-

oriented software (potentially unmodified) to be applicable to evolving hardware in

both embedded systems (mobile phones and tablets), desktop computers and super-

computing applications.

6.4 Runtime Embedding

The significance of the Internet and the World Wide Web cannot be overlooked. Neces-

sitated by the lack of concurrent programming models, development of web applica-

tions, both client-side and server-side uses an event-driven model. On the server-side,

incoming requests are distinct events which start a new computation and manipulate

shared data. Persistent state must be emulated by retrieving it at the beginning of a re-

quest or encapsulating it in the request itself. On the client side, the application makes

requests of servers and sets up event handlers for them (and other events such as user

button clicks).

While an asynchronous communication model is appropriate for requests commu-

nicated over the internet, it may not be appropriate at the application level. Event-

driven programming obscures control flow [151]. Thus work should be done on how
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process-oriented style programming can be supported in this space. For example using

web browser plugins such as Chrome Native Client to provide alternative program-

ming enviroments or extensions to JavaScript which provide runtime support for con-

currency. It is possible to see that with appropriate extensions and runtime support

JavaScript could be used as a compilation target for a process-oriented language, much

as is done with Clojure (2.5.9). Research is required in this area, not least to investigate

the efficiency of such an approach on power constrained mobile devices.

For server programming, integration with existing server architectures to support

persistent light-weight processes is foreseeable. Akka (2.5.26.1) with its light-weight

Actor model concurrency has found some popularity in this space. Work needs to

be carried out to investigate whether WebSockets can be used for communication be-

tween process-oriented server and client components [132]. An ideal scenario is a

synchronous efficient process-oriented application running on both client and server,

communicating over the asynchronous Internet in a consistent manner. Persistent com-

ponents of the server system could be distributed amongst an array of machines in a

cloud environment with process migration occurring to rebalance load dynamically at

run-time.

6.5 New Languages

The technical work of this thesis predates or overlaps the release of new programming

languages with process-oriented concurrency models, notably Google Go (2.5.13) and

Rust (2.5.25). Broadly speaking the techniques developed in this thesis should be ap-

plicable to these languages. Practical work is required to prove this.

For Google Go, mutable data and race hazards in the select (choice) statement present

two implementation concerns. A “safe” subset of the language could be defined, al-

though the use of features in the standard library would need to be examined. As

the select statement offers no guarantees of ordering, the alternation algorithm need

only be modified to maintain correctness of implementation when multiple processes



CHAPTER 6. CONCLUSIONS AND FURTHER WORK 268

alternate on the same channel, rather than guaranteeing a specific behaviour (with re-

spect to commitment). Implicit locking of shared channels is also required. Alterna-

tively, a heavy-weight generalised ALT implementation such as that of Lowe could be

used [165].

Rust has a memory model based on isolation, where mutable state is encapsulated

in a manner similar to occam-pi’s mobile data model. Additionally the choice primi-

tive, select, is only applicable to input. This asymmetry matches occam-pi’s alternation

which only permits choice on input channel ends. The absence of shared memory al-

lows Rust to use a per-task garbage collection model for memory management. Thus

from a runtime perspective Rust is a good candidate for further exploration of the al-

gorithms presented in this thesis. From a language perspective, Rust’s heavy use of

symbols on top of its C derived syntax may act to hinder its adoption.

Beyond these examples there is still scope for the development of new languages

based on a strongly process-oriented model of concurrency. One aspect overlooked

by Google Go in particular, and Rust to a lesser extent is compile time and run-time

analysis to avoid common concurrency errors. Compile time analysis and the embed-

ding of known safe patterns in the language design can greatly reduce programmer

errors. Any new process-oriented language should by default generate models appro-

priate for formal reasoning about the interactions of components [228]. Additionally,

run-time analysis may be required for dynamic process networks. The programmer

should be guided towards, and where necessary constrained to, safe and mechanically

sympathetic models of computation which are accessible to both informal and formal

reasoning.
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6.6 Closing Remarks

Driven by physical limits and resource constraints, computer architectures are increas-

ingly parallel and heterogeneous. Process-oriented programming is well-equipped to

both manage and utilise the concurrency present in these new and emerging computer

systems. The technical contributions of this thesis provide the engineering required to

realise the potential of fine-grain process-oriented programming on modern multi-core

hardware. Software written in a process-oriented style today should, through further

work on runtime systems, be equally applicable to the computer systems of tomorrow.



Appendix A

Runtime Interface

This appendix provides an overview of the standardised interface to the runtime kernel

developed to support occam-pi compilation.

A.1 Calling Convention

Kernel calls use a modified C calling function designed to keep as much information in

registers such as to avoid stack access. Only Intel x86 (32-bit) is presently supported and

hence that is the only calling convention documented here. Importantly on entering a

kernel call two pieces of information are always made available: the logical processor

data structure pointer (sched), and the workspace pointer of the present process (Wptr).

How these are managed outside the kernel is not important, but they must be passed

in with every kernel call.

A.1.1 tranx86

For tranx86 compiled code the kernel functions are defined (in C) as:

void __attribute__ (( regparm (3)))

270
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kernel_symbol

(word param0 , sched_t *sched , word *Wptr)

This means the first parameter passed to the kernel call is in %EAX, the scheduler

pointer in %EDX and the workspace pointer in %ECX. Remaining inputs are stored on the

stack. The kernel uses the return address stored on the stack.

On exiting a runtime kernel call, any output is returned in %EAX. If a context switch

has not occurred then the stack will be unwound in C. If the return instruction pointer

needs to be changed, then this will be done before the stack is unwound so that the RET

instruction jumps back to the new instruction pointer. If a context switch has occurred

then an assembly instruction sequence is used to reset the stack pointer, losing all stack

frames allocated since kernel entry, and then jump to the new instruction pointer. The

workspace pointer must also be restored to the tranx86 register used for workspace

pointers %EBP.

movl Wptr , %ebp

movl sched ->stack , %esp

jmp *-4(%ebp)

A.1.2 LLVM

LLVM kernel call functions use standard C calling convention. Thus LLVM kernel calls

are defined as:

word *kernel_Y_symbol(sched_t *sched , word *Wptr , ...)

word kernel_X_symbol(sched_t *sched , word *Wptr , ...)

Context switching functions return a new Wptr as a word * type. Other functions

return a word value. This means that context switching kernel calls cannot return values,

which disables some special case alternation calls, but otherwise is compatible with the

tranx86 runtime. On returning from a kernel call it is the responsibility of the generated
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LLVM code to tail call the continuation pointed to by Wptr[Iptr] passing the sched and

Wptr values to it.

A.2 Processes

A.2.1 endp

Symbol: Y endp

Mnemonics: ENDP

Input: Wptr

End current process, potentially completing a process barrier. This passes the Wptr

of the parent process which contains a process barrier. An atomic decrement and test is

taken on the barrier (at Wptr[Count]) and if the count reaches zero, Wptr is update (saved

priority, affinity and instruction pointer restored) and placed on a run-queue.

A.2.2 mreleasep

Symbol: Y mreleasep

Mnemonics: MRELEASEP

Input: adjust

Frees a process whos workspace was allocated by X_malloc. The workspace pointer

of the calling process is adjusted by adjust words, and then released as a mobile type.

This supports recursive calls (which allocated new workspaces).

A.2.3 pause

Symbol: Y pause

Mnemonics: Only used during runtime start.
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Reschedule by placing the current process on run-queue and entering scheduler

loop.

A.2.4 par enroll

Symbol: X par enroll

Mnemonics: PAR ENROLL

Input: Wptr, count

Enrols processes on a process barrier. This performs an atomic increment on Wptr[Count]

of count.

A.2.5 proc alloc

Symbol: X proc alloc

Mnemonics: PROC ALLOC

Input: flags, words

Output: Wptr

Allocate a process workspace of words size (in machine words). The flags are not

used. The returned workspace is a mobile type.

A.2.6 proc mt copy

Symbol: X proc mt copy

Mnemonics: PROC MT COPY

Input: Wptr, offset, mobile type

Copy a mobile type to workspace allocated via X_proc_alloc. Install a mobile type

parameter into a workspace, this is equal to Wptr[offset]:= mt_clone(mobile type).

This exists to facilitate the creation of workspaces in distributed memories.
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A.2.7 proc mt move

Symbol: X proc mt move

Mnemonics: PROC MT MOVE

Input: Wptr, offset, mobile type pointer

Move a mobile type to workspace allocated via X_proc_alloc. Install a mobile type

parameter into a workspace; this is equal to Wptr[offset]:= *pointer. The callers refer-

ence to the mobile type is set to null. This exists to facilitate the creation of workspaces

in distributed memories.

A.2.8 proc param

Symbol: X proc param

Mnemonics: PROC PARAM

Input: Wptr, offset, parameter

Pass a param to workspace allocated via X_proc_alloc. Install a parameter into a

workspace; this is equal to Wptr[offset]:= parameter. This exists to facilitate the cre-

ation of workspaces in distributed memories.

A.2.9 proc start

Symbol: Y proc start

Mnemonics: PROC START

Input: offset, Wptr, Iptr

Start a process using a workspace allocated via X_proc_alloc. The Wptr is adjusted

by offset words and made into a valid process descriptor before being placed on a run-

queue. The adjustment is required as workspaces grow down, but the allocated Wptr is

for the bottom of the workspace.
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A.2.10 runp

Symbol: X runp

Mnemonics: RUNP

Input: Wptr

Adds a process to run-queue. The process descriptor Wptr is added to an appro-

priate run-queue and then control returns to the calling process. This constrasts with

Y_startp as a context switch will not occur. The relevant fields of Wptr such as Iptr and

Priofinity must be made valid before this call.

A.2.11 startp

Symbol: Y startp

Mnemonics: STARTP

Input: Wptr, Iptr

Start a process. Wptr is the initial workspace of the process and Iptr the initial in-

struction pointer. The process inherits the priority and affinity of the current process.

The runtime will either place the new process on a run-queue for later execution or

perform a context switch to it immediately. In either case the calling process may be

switched out. This is a change from the STARTP behaviour of the Transputer [139].

A.2.12 stopp

Symbol: Y stopp

Mnemonics: STOPP

Stop current process. Make the process descriptor valid (for use with X_runp) and

enter scheduler loop. Note the process descriptor is not placed on a scheduler loop.
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A.3 Mobiles

A.3.1 malloc

Symbol: X malloc

Mnemonics: MALLOC

Input: size

Output: mobile type pointer

Allocates memory of a given size. Produces a mobile type if size > 0, otherwise

returns null.

A.3.2 mrelease

Symbol: X mrelease

Mnemonics: MRELEASE

Input: mobile type pointer

Releases memory from X_malloc. This is the same as X_mt_release.

A.3.3 mt alloc

Symbol: X mt alloc

Mnemonics: MT ALLOC

Input: type, size

Output: mobile type pointer

Allocates a new mobile type and initialises it. See appendix B.
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A.3.4 mt bind

Symbol: X mt bind

Mnemonics: MT BIND

Input: bind type, mobile type pointer, data pointer

Output: mobile type pointer

Bind a mobile type in some way to a bit of data. This is used by RMoX to bind

mobiles to DMA capable memory or between virtual and physical spaces. Returns a

replacement mobile type pointer as a result.

A.3.5 mt clone

Symbol: X mt clone

Mnemonics: MT CLONE

Input: mobile type pointer (of source)

Output: mobile type pointer (of clone)

Clones a mobile type.

A.3.6 mt dclone

Symbol: X mt dclone

Mnemonics: MT DCLONE

Input: type, size, pointer

Output: mobile type pointer

Clones some data into a new mobile type. This allocates a mobile type and copies

in size bytes from pointer.
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A.3.7 mt enroll

Symbol: X mt enroll

Mnemonics: MT ENROLL

Input: count, mobile type

Resign on a mobile type. Increase the barrier enrollment count by count.

A.3.8 mt lock

Symbol: Y mt lock

Mnemonics: MT LOCK

Input: lock type, mobile type

Lock a mobile type. The type of lock is specified by lock type, which can be MT_CB_CLIENT

or MT_CB_SERVER which represent the two directions a channel can be locked in (these use

separate semaphores internally). Calling process is blocked until the lock is gained.

A.3.9 mt release

Symbol: X mt release

Mnemonics: MT RELEASE

Input: mobile type pointer

Frees a mobile type.

A.3.10 mt resign

Symbol: X mt resign

Mnemonics: MT RESIGN

Input: count, mobile type

Resign from a mobile type. Reduce the barrier enrollment count by count.
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A.3.11 mt resize

Symbol: X mt resize

Mnemonics: MT RESIZE

Input: resize type, mobile type pointer, argument

Output: mobile type pointer

Resize a mobile type. Only a resize type of MT_RESIZE_DATA is supported. This

increases or decreases the size of the mobile type so it can hold at least argument bytes.

Returns a replacement mobile type pointer as a result.

A.3.12 mt sync

Symbol: Y mt sync

Mnemonics: MT SYNC

Input: mobile type

Synchronise on mobile type. This is used for barriers in which case the call will not

complete until the barrier completes.

A.3.13 mt unlock

Symbol: X mt unlock

Mnemonics: MT UNLOCK

Input: lock type, mobile type

Unlock a mobile type. The type of lock is specified by lock type, which can be

MT_CB_CLIENT or MT_CB_SERVER which represent the two directions a channel can be locked

in (these use separate semaphores internally). This assumes the lock was previously

gained with Y_mt_lock.
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A.4 Channels

A.4.1 xable

Symbol: Y xable

Mnemonics: XABLE

Input: channel

Synchronise with outputting process on channel. The caller is descheduled until an

output process arrives on the channel. This should be followed by an X_xend.

A.4.2 xend

Symbol: X xend

Mnemonics: XEND

Input: channel

Reschedules outputting process blocked on channel. This should follow a Y_xable.

A.4.3 in

Symbol: Y in

Mnemonics: IN

Input: count, channel, pointer

Read count bytes from channel into pointer.

A.4.4 in32

Symbol: Y in32

Mnemonics: IN32

Input: channel, pointer

Read 4 bytes from channel into pointer.
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A.4.5 in8

Symbol: Y in8

Mnemonics: IN8

Input: channel, pointer

Read 1 byte from channel into pointer.

A.4.6 xin

Symbol: Y xin

Mnemonics: XIN

Input: count, channel, pointer

Read count bytes from channel into pointer. Does not reschedule the process blocked

on the channel after it completes. This should follow a Y_xable and be followed by a

X_xend.

A.4.7 mt in

Symbol: Y mt in

Mnemonics: MT IN

Input: channel, pointer

Read a mobile type from channel and store it in pointer. This updates the reference

count if the mobile type is a copy type such as shared channel. This enrolls the receiver

if the mobile type was a barrier.

A.4.8 mt out

Symbol: Y mt out

Mnemonics: MT OUT

Input: channel, mobile type pointer
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Writes a mobile type to channel. This updates the reference count if the mobile type

is a copy type such as shared channel. If the type is a moving type, for example mobile

data, then the pointer is made null on leaving this call.

A.4.9 mt xchg

Symbol: Y mt xchg

Mnemonics: MT XCHG

Input: channel, mobile type pointer

Swaps a mobile type via channel. After the call the mobile type pointer will point

at the other communicating party’s mobile type.

A.4.10 mt xin

Symbol: Y mt xin

Mnemonics: MT XIN

Input: channel, pointer

Read a mobile type pointer from the channel and store it in pointer. This updates

the reference count if the mobile type is a copy type such as shared channel. This enrolls

the receiver if the mobile type was a barrier. Does not reschedule the process blocked

on the channel after it completes. This should follow a Y_xable and be followed by a

X_xend.

A.4.11 mt xout

Symbol: Y mt xout

Mnemonics: MT XOUT

Input: channel, mobile type pointer

Writes a mobile type to channel. This updates the reference count if the mobile type

is a copy type such as shared channel. If the type is a moving type, for example mobile
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data, then the pointer is made null on leaving this call. Does not reschedule the process

blocked on the channel after it completes. This should follow a Y_xable and be followed

by a X_xend.

A.4.12 mt xxchg

Symbol: Y mt xxchg

Mnemonics: MT XXCHG

Input: channel, mobile type pointer

Swaps a mobile type via the channel. After the call the pointer will point at the

other communicating party’s mobile type. Does not reschedule the process blocked

on the channel after it completes. This should follow a Y_xable and be followed by a

X_xend.

A.4.13 out

Symbol: Y out

Mnemonics: OUT

Input: count, channel, pointer

Write count bytes from pointer into channel.

A.4.14 out32

Symbol: Y out32

Mnemonics: OUT32

Input: channel, pointer

Write 4 byte from pointer into channel.
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A.4.15 out8

Symbol: Y out8

Mnemonics: OUT8

Input: channel, pointer

Write 1 byte from pointer into channel.

A.4.16 outbyte

Symbol: Y outbyte

Mnemonics: OUTBYTE

Input: value, channel

Write the byte value to channel. The byte is stored in Wptr[Temp].

A.4.17 outword

Symbol: Y outword

Mnemonics: OUTWORD

Input: value, channel

Write the word value to channel. The word is stored in Wptr[Temp].

A.5 Alternation

A.5.1 alt

Symbol: X alt

Mnemonics: ALT

Begin alternation. This sets up the process descriptor for alternation. Only other

alternation calls should follow this until Y_altend is called.
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A.5.2 altend

Symbol: Y altend

Mnemonics: ALTEND

Finishes alternation. Unlike the T9000 variant this may reschedule the calling pro-

cess to avoid races.

A.5.3 talt

Symbol: X talt

Mnemonics: TALT

Begin timer alternation. This sets up the process descriptor for alternation. It also

initialises timer related fields. Only other alternation calls should follow this until

Y_taltend is called.

A.5.4 altwt

Symbol: Y altwt

Mnemonics: ALTWT

Wait on alternation. This may return immediately if a guard has already become

ready. Only other alternation calls should follow this until Y_altend is called.

A.5.5 taltwt

Symbol: Y taltwt

Mnemonics: TALTWT

Wait on timer alternation, checking timer fields and setting up timer node if re-

quired. This may return immediately if a guard has already become ready. On return

the Time_f will be set the time the process was rescheduled. Only other alternation calls

should follow this until Y_taltend is called.
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A.5.6 disc

Symbol: X disc

Mnemonics: DISC

Input: ready Iptr, guard, channel

Output: ready

Disable channel. If guard is not zero disable channel. If the channel is ready and

Wptr[Temp] is null then store the ready Iptr in Wptr[Temp] and return true. Otherwise

return false.

A.5.7 diss

Symbol: X diss

Mnemonics: DISS

Input: ready Iptr, guard

Output: ready

Disable SKIP guard. If guard is not zero and Wptr[Temp] is null then store the ready Iptr

in Wptr[Temp] and return true. Otherwise return false.

A.5.8 dist

Symbol: X dist

Mnemonics: DIST

Input: ready Iptr, guard, timeout

Output: ready

Disable timer. If guard is not zero and timeout is after Wptr[Time_f] and Wptr[Temp]

is null then store the ready Iptr in Wptr[Temp] and return true. Otherwise return false.
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A.5.9 enbc

Symbol: X enbc

Mnemonics: ENBC

Input: guard, channel

Output: ready

Enable channel. If guard is not zero, then channel is enabled for alternation. Returns

whether channel is ready (0 or 1).

A.5.10 enbc2

Symbol: Y enbc2

Mnemonics: ENBC2

Input: ready Iptr, channel

Enable channel with ready address. If the channel is ready then the call returns to

the instruction pointer ready Iptr.

A.5.11 enbc3

Symbol: Y enbc3

Mnemonics: ENBC3

Input: ready Iptr, guard, channel

Output: ready

Enable channel with ready address. If guard is not zero, then channel is enabled

for alterntion. If the channel is ready then the call returns to the instruction pointer

ready Iptr. Return value depends on if channel is ready (0 or 1).
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A.5.12 enbs

Symbol: X enbs

Mnemonics: ENBS

Input: guard

Output: ready

Enable skip guard. If guard is not zero then the alternation state is automatically

made ready. The return value of ready is the same as guard.

A.5.13 enbs2

Symbol: Y enbs2

Mnemonics: ENBS2

Input: ready Iptr

Enable skip guard with ready address. The alternation state is automatically made

ready. The call returns to the instruction pointer ready Iptr.

A.5.14 enbs3

Symbol: Y enbs3

Mnemonics: ENBS3

Input: ready Iptr, guard

Output: ready

Enable skip guard with ready address and guard. If guard is not zero then the al-

ternation state is automatically made ready. The call returns to the instruction pointer

ready Iptr. The return value of ready is the same as guard.
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A.5.15 enbt

Symbol: X enbt

Mnemonics: ENBT

Input: guard, timeout

Output: ready

Enable timer. If guard is not zero, enable alternation timeout at timeout. If timeout

has already passed then automatically make state ready. The timeout value is stored

in the Time_f field; if this was already set then the closer value in time is used. Return

value indicates if the timer is ready or not (0 or 1).

A.5.16 enbt2

Symbol: Y enbt2

Mnemonics: ENBT2

Input: ready Iptr, timeout

Enable timer with ready address. If timeout has already passed then automatically

make state ready. The timeout value is stored in the Time_f field; if this was already set

then the closer value in time is used. If ready the call returns to the instruction pointer

ready Iptr.

A.5.17 enbt3

Symbol: Y enbt3

Mnemonics: ENBT3

Input: ready Iptr, guard, timeout

Output: ready

Enable timer with ready address and guard. If guard is not zero, enable alternation

timeout at timeout. If timeout has already passed then automatically make state ready.

The timeout value is stored in the Time_f field; if this was already set then the closer
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value in time is used. Return value indicates if the timer is ready or not (0 or 1). If

ready the call returns to the instruction pointer ready Iptr.

A.5.18 ndisc

Symbol: X ndisc

Mnemonics: NDISC

Input: ready Iptr, guard, channel

Output: ready

Disable channel (new style). If guard is not zero disable channel. If the channel is

ready then store the ready Iptr in Wptr[Temp] (overwriting any other value store there)

and return true. Otherwise return false.

A.5.19 ndiss

Symbol: X ndiss

Mnemonics: NDISS

Input: ready Iptr, guard

Output: ready

Disable SKIP guard (new style). If guard is not zero then store the ready Iptr in

Wptr[Temp] (overwriting any other value store there) and return true. Otherwise return

false.

A.5.20 ndist

Symbol: X ndist

Mnemonics: NDIST

Input: ready Iptr, guard, timeout

Output: ready

Disable timer (new style). If guard is not zero and timeout is after Wptr[Time_f] then
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store the ready Iptr in Wptr[Temp] (overwriting any other value store there) and return

true. Otherwise return false.

A.6 Auxiliary

A.6.1 getaff

Symbol: X getaff

Mnemonics: GETAFF

Output: bitmap

Get processor affinity. Returns the present affinity bitmap from the priofinity field

of the logical processor.

A.6.2 getpas

Symbol: X getpas

Mnemonics: GETPAS

Output: priofinity

Get current raw priofinity. The unmodified value of the priofinity field of the log-

ical processor is returned. This is can be stored in a process barrier or another process

workspace to copy both affinity and priority settings.

A.6.3 getpri

Symbol: X getpri

Mnemonics: GETPRI

Output: priority

Get process priority. Return the present priority from the priofinity field of the

logical processor.
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A.6.4 proc end

Symbol: Y proc end

Mnemonics: PROC END

Input: Wptr

Called by a process started by Y_proc_start to terminate. The Wptr is released (as a

mobile type) and the scheduler loop entered. This is similar to Y_mreleasep; however,

the valid Wptr is already known so an offset is not required.

A.6.5 sem claim

Symbol: Y sem claim

Mnemonics: SEM CLAIM

Input: pointer

Claim semaphore at pointer. Calling process is blocked until the semaphore is

claimed.

A.6.6 sem init

Symbol: X sem init

Mnemonics: SEM INIT

Input: pointer

Initialise semaphore at pointer. The semaphore fptr and bptr words are set to rep-

resent an empty queue with the lock released.

A.6.7 sem release

Symbol: X sem release

Mnemonics: SEM RELEASE

Input: pointer
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Release semaphore at pointer. This assumes the semaphore was previously claimed

with Y_sem_claim.

A.6.8 setaff

Symbol: Y setaff

Mnemonics: SETAFF

Input: bitmap

Sets the present affinity bitmap in the priofinity field of the logical processor. If

necessary the present batch will be split to maintain the same priofinity invariant of

batches. The process may be mailed to another logical processor if the bitmap no longer

supports execution on the present logical processor.

A.6.9 setpri

Symbol: Y setpri

Mnemonics: SETPRI

Input: priority

Set process priority. If the priority of the current process is changed then it will be

placed on an appropriate run-queue and scheduler loop entered.

A.6.10 wait int

Symbol: Y wait int

Mnemonics: WAIT INT

Input: interrupt, mask

Entry point for an RMoX (occam-pi operating system) process to wait for an inter-

rupt [46]. Special kernel call allowing processes to wait on processor interrupts. The

mask is not used.
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A.7 Other

A.7.1 BasicRangeError

Symbol: Y BasicRangeError

Entry point for range check error instruction with no information. Display appro-

priate error message and stop runtime.

A.7.2 dtrace

Symbol: X dtrace

Input: trapval_A, trapval_B

Handles debugging traces generated by tranx86.

A.7.3 floaterr

Symbol: Y floaterr

Input: info2, info1, Wptr, filename pointer, FPU status

Entry point for floating point error. Display appropriate error message and stop

runtime.

A.7.4 fmul

Symbol: X fmul

Mnemonics: FMUL

Input: Areg, Breg

Output: Creg

FMUL implementation. This is done in C as it is easier than assembly expansion.

See FMUL instruction for T9000 [139].
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A.7.5 norm

Symbol: X norm

Mnemonics: NORM

Input: Areg, Breg

Output: Areg, Breg, Creg

Normalises 64-bit double-length integer. This is done in C as it is easier than assem-

bly expansion. See NORM instruction FMUL [139].

A.7.6 overflow

Symbol: Y overflow

Input: info2, info1, Wptr, filename pointer

Entry point for arithmetic overflow. Display appropriate error message and stop

runtime.

A.7.7 RangeCheckError

Symbol: Y RangeCheckError

Input: info2, info1, Wptr, filename pointer

Entry point for range check error instruction with no information. This does not

take a return address as no return is expected. Display appropriate error message and

stop runtime.

A.7.8 rtthreadinit

Symbol: Y rtthreadinit

Input: Wptr

Call by logical processor thread at start up. Allocates and initialises logical proces-

sor data structures, installs a global pointer to itself and marks the logical processor
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enabled. If this is the first thread it then starts other runtime threads, up to count spec-

ified by CCSP_RUNTIME_THREADS environment variable or number of detected processors.

It then begins executing the process specified by Wptr if it is not null, else enters sched-

uler loop to perform work stealing.

A.7.9 BNSeterr

Symbol: Y BNSeterr

Mnemonics: SETERR

Entry point for SETERR instruction with no information, does not provide a return

address. Display appropriate error message and stop runtime.

A.7.10 shutdown

Symbol: Y shutdown

Mnemonics: SHUTDOWN

Sets shutdown flag in runtime and enters scheduler loop. All schedulers will even-

tually detect the flag and terminate.

A.7.11 trap

Symbol: X trap

Input: trapval_A, trapval_B, trapval_C

Output: trapval_A, trapval_B, trapval_C

Trap outputing present state of registers, workspace and stack. Supports continued

execution.

A.7.12 unsupported

Symbol: Y unsupported
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Unsupported kernel call. Displays an error message and shuts down runtime.

A.7.13 zero div

Symbol: Y zero div

Input: info2, info1, Wptr, filename pointer

Entry point for integer division-by-zero error. Display appropriate error message

and stop runtime.



Appendix B

Mobile Types

This appendix provides an overview of the mobile types object model developed to

support compilation of occam-pi. Prior to this object model all mobile types were al-

located in untyped memory; all type information was embedded in the compiler and

was not accessible at runtime.

There are two different types of data in the occam-pi language, static data and mo-

bile data. When sending static data over a channel it is copied from one process work-

space to another; this contrasts with mobile data which is transferred by reference. The

occam-pi compiler strictly manages the references to mobile data such that there is only

one at a time; this prevents all race hazards at compile time. The runtime provides fa-

cilities for allocating, releasing, cloning and communicating mobile data. Additionally

the runtime also provides the same facilities for channels, barriers and complex hierar-

chical structures containing other mobiles.

There are three types of mobile:

• arrays of basic data bytes and of other mobiles,

• channel bundles,

• and barriers.

298
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Mobile channel bundles are arrays of channel words. They may be declared as

shared, in which case their references are copied when communicated instead of moved.

The references to shared mobile channel bundles are counted, release operations decre-

menting the count until it reaches zero. Additionally, shared channels contain a pair of

semaphores which can be used to lock and unlock each direction of communication.

Barriers are reference counted in addition to their enrollment count. This allows a

process to resign from a barrier while maintaining a reference to it for later use, e.g. re-

enrolling. Whenever a barrier is communicated, the receiving process is automatically

and atomically enrolled as part of the communication. This facilitates reasoning, as

the sender may send a barrier then synchronise on it, safe in the knowledge that the

synchronisation cannot complete until the receiver either synchronises or resigns.

B.1 Descriptors

Mobile types are described by bit-packed descriptors consisting of a machine word.

The basic structure of a descriptor is shown in figure 76.

• simple flag: This flag bit is presently always set. It indicates that the type is solely

contained in the descriptor word. In future clearing this bit will indicate the type

descriptor word is a pointer to a descriptor structure in memory. This will allow

programs to define complex mobile types containing various nest mobiles at run-

time.

• type number: Four bits represent the mobile type number. See section B.2 for a

complete list of types.

• type flags: These bits, zero or more, contain flags specific to the type number. Typ-

ically there will always be three type specific flag bits, rounding the size of a type

descriptor up to at least a byte.
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N 5 1 0 LSB

| type flags | type number | simple flag |

Figure 76: Mobile type descriptor layout.

The descriptor word is stored in the first memory word below the mobile type mem-

ory, i.e. ((word *)mobile)[-1]. This allows all mobile types to be self contained alloca-

tion. The run-time may store additional data within the mobile type; however, any such

data is implementation specific. Only the type descriptor should be ever be relied on.

B.2 Type Numbers

B.2.1 0: Numeric Data

The mobile type is numeric data in machine byte-order, the type flags (0− 2) represent

a numeric identifier for the subtype:

0 BYTE

1 INT16

2 INT32

3 INT64

4 REAL32

5 REAL64

These subtypes are arrange so that the number of bytes required to represent them

can be calculated from the type flag bits as follows: 2(flag2+(flag1×2)+flag0).

This can be simply expressed in C syntax as:

2 << (( flags >> 2) + (flags & 0x3))

Any remaining bits in the mobile type descriptor word are not used.
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MSB LSB

8 5 1 0

| dimensions: 1 | mobile array (1) | simple flag (1) |

16 13 9 8

| numeric type: 2 | numeric data (0) | simple flag (1) |

Figure 77: Example mobile array type descriptor.

B.2.2 1: Mobile Array

The type flags (0− 2) of the mobile array represent the number of dimensions minus

one. Hence if the type flags are zero then the array has one dimension. In memory the

array is represented as:

struct mt_array_t {

void *data;

word dimensions[];

}

The data field points to the array data, while the dimensions array contains the array

dimensions. The run-time does not maintain or use the dimensions; they are provided

for application use.

All remaining bits in the mobile type descriptor word are used to represent the inner

type of the array. For example when declaring an array of bytes, a numeric data type

descriptor will follow.

To give an illustrated example, a two-dimensional array of integers would be de-

scribed by the following descriptor in figure 77.

B.2.3 2: Mobile Channel Bundle

An array of channel word or channel bundle. Each element of the mobile type maybe

used as a communication channel.
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The type flags define the following properties:

0 shared: the channel bundle is shared, this changes its communications semantics

and allocates internal memory for semaphores making the lock and unlock op-

erations valid. A shared channel bundle is copied on communication, where as

unshared one is moved.

1 pony: allocate additional space for pony data [230]. This space is allocated after

the channel words and its usage is defined by the compiler.

2 unused.

3-11 channel count: number of channels in the bundle.

All channel bundles are reference counted, including unshared bundles. Copies

should be produced with the clone or process parameter copy operations and released

with the release operation. In future, references to the same channel bundle may have

different pointers and memory backing them. The channel operations will link the

words in the separate bundles to provide seamless communication. For this reason it

should not be assumed that the output of a clone, copy or move operation will be the

same as its input.

B.2.4 3: Mobile Barrier

The type flags hold the numeric type of the barrier. The actual structure of the bar-

rier is implementation specific, thus the barrier should simply be treated as a handle.

Available barrier types are:

0 full: A full barrier used for common barrier synchronisation.

1 forking: A forking barrier, supports only a single process synchronising on the

barrier. The barrier is automatically freed when synchronisation completes. Child

processes are enrolled on the barrier when created and resign by freeing it on ter-

mination. The parent process synchronises to wait for completion of all children.
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2 mobile process: This is specific to the mobile process implementation in the occ21

compiler and should not be used elsewhere.

B.2.5 4: Mobile Process

Reserved for future definition.

B.2.6 5: Mobile Type

Can be any mobile type. This is used for constructing containers for other mobile types,

where the mobile type contain may not be known or may be variable. For example an

array of mixed mobile types.

B.2.7 6: Mobile Type Descriptor

Reserved for future definition. Mobile type descriptors will be used to describe types

which do not fit in a single machine word descriptor, as discussed in B.1.

B.2.8 7: Mobile Data

Mobile data of unspecified type. The inner type of the data is not declared. Thus it may

not contain nested mobiles or undergo type conversion on communication boundaries.

For implementation reasons the present compiler uses this type for implementing static

mobiles of fixed size and storing the workspaces of recursive processes.

B.2.9 8: Fixed Array

Reserved for future definition.
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B.2.10 9: Array Options

This special type defines additional options for a mobile array type. It should imme-

diately follow the mobile array descriptor before the inner type. The type flag bits are

used as follows:

0 DMA: data in the array will be used for DMA access by hardware. This hints

to the runtime memory allocator that the memory backing the array must be ac-

cessible by peripheral busses in the system. It also triggers the allocation of an

additional data pointer after the dimension elements to store the hardware ad-

dress of the array data. The hardware address of the array data memory may

different from that in the data pointer when the system uses address translation.

1 separate: data is separately allocated and should be released by the runtime. This

allows the allocation of empty (zero-length) mobile arrays, which are later bound

to other mobiles. When the mobile array is released the mobile type pointed to by

the data pointer will also be released.

2 unused.

3-6 alignment for the array data as a power of two.

B.3 Operations

A number of operations are defined over mobile types, this section gives a brief overview

of them.

B.3.1 malloc, mrelease

The malloc operation acts as in C, allocating a number of bytes of memory for use by the

application. Internally this is a hot-path for allocating mobile data (type 7). Memory

allocated via malloc is valid for use as a mobile type. mrelease acts like C’s free;

however, it is only defined for memory allocated by malloc.
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For legacy reasons, in the present implementation allocations of size 0 will return

NULL pointers, and the release of NULL pointers using mrelease is invalid.

B.3.2 mt alloc, mt release

These operations allocate and release mobile types. mt alloc takes a type descriptor

and a size parameter. For arrays the size parameter indicates the total number of ele-

ments, for channel bundles the channel count and for mobile data the number of bytes.

Other types do not use the size parameter. As with mrelease, mt release on a NULL

pointer is not valid.

B.3.3 mt clone

A clone operation is provided which can create a copy of any mobile type, including

inner mobiles. For data types clone will copy the data into a new independent mobile

type, for channel bundles and barriers the reference and enroll counts will simply be

updated. With nested trees of mobile types the behaviour depends on the subtypes,

for example copying an array of barriers will produce a new array, but the barriers

referenced will be the same with the associated reference and enroll counts updated.

B.3.4 mt in, mt out

The full set of channel operations are defined for mobile types. Most operations take

a pointer to a mobile type pointer. During output of a mobile type the source pointer

will be set NULL in order to preserve reference integrity. The exception to this is when

outputting shared channel bundles and barriers, in which case the reference count is

updated and the source pointer left untouched.
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B.3.5 mt lock, mt unlock

These operations take a mobile type and a lock type. The associated lock semaphore is

manipulated, potentially causing the process to block if the lock is unavailable. These

operations are only defined for shared channel bundles where they are used to lock

associated directions of communication.

In future these operations maybe extended to shared data types.

B.3.6 mt sync, mt enroll, mt resign

Barrier synchronisation, enroll and resign operations. Enroll and resign operations are

typically implicit. Explicit operations are only required when handling groups of par-

allel processes. Under normal operation communicating a barrier automatically enrolls

the receiver and releasing a barrier resigns the releasing process.

B.3.7 mt bind

This special purpose operation binds a mobile to separate piece of memory or another

mobile type. It is only supported for mobile arrays. Three types of bind are supported:

• irtual: bind the mobile to a virtual memory address. A physical address is stored

for later reference if the associated array options structure is present and indicates

DMA operation.

• physical: bind the mobile to a physical memory address, generating the virtual

address for use in the application.

• DMA: make sure the memory in the mobile is hardware accessible, if not, reallo-

cate the mobile into hardware accessible memory copying the data and releasing

the original mobile type.
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B.3.8 mt resize

Resize a mobile type using the provided size parameter. At present only data resiz-

ing is supported and only for mobile arrays. This operation may be able to perform

resizing without memory reallocation and copying, and also deals with releasing and

initialising pointers for nested mobile types.
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